
Prove the following:
$\sin \left( {n + 1} \right)x\sin \left( {n + 2} \right)x + \cos \left( {n + 1} \right)x\cos \left( {n + 2} \right)x = \cos x$
Answer
576.3k+ views
Hint: We can compare the LHS of the given equation to the RHS of the trigonometric identity $\cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)$. On simplification and further calculations, we will obtain the RHS of the equation. We can say the equation is correct when $LHS = RHS$
Complete step-by-step answer:
We need to prove $\sin \left( {n + 1} \right)x\sin \left( {n + 2} \right)x + \cos \left( {n + 1} \right)x\cos \left( {n + 2} \right)x = \cos x$
Let us look at the LHS.
$LHS = \sin \left( {n + 1} \right)x\sin \left( {n + 2} \right)x + \cos \left( {n + 1} \right)x\cos \left( {n + 2} \right)x$
It is of the form $\sin A\sin B + \cos A\cos B$ where $A = \left( {n + 1} \right)x$ and $B = \left( {n + 2} \right)x$
We know that $\cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)$
We can substitute the values,
$ \Rightarrow \sin \left( {n + 1} \right)x\sin \left( {n + 2} \right)x + \cos \left( {n + 1} \right)x\cos \left( {n + 2} \right)x = \cos \left( {\left( {n + 1} \right)x - \left( {n + 2} \right)x} \right)$
Then the LHS becomes,
\[ \Rightarrow LHS = \cos \left( {\left( {n + 1} \right)x - \left( {n + 2} \right)x} \right)\]
We can simplify of the terms inside the cos function
On doing the multiplication, we get,
\[LHS = \cos \left( {\left( {nx + x} \right) - \left( {nx + 2x} \right)} \right)\]
Opening the brackets, we get,
\[LHS = \cos \left( {nx + x - nx - 2x} \right)\]
After simplification, we get,
\[LHS = \cos \left( { - x} \right)\]
We know that \[\cos \left( { - x} \right) = \cos \left( x \right)\]
$ \Rightarrow LHS = \cos \left( x \right)$.
RHS is also equal to\[\cos x\]. So, we can write,
$LHS = RHS$.
Hence the equation is proved.
Note: We must be familiar with the following trigonometric identities used in this problem.
1. $\cos \left( {A \pm B} \right) = \cos \left( A \right)\cos \left( B \right) \mp \sin \left( A \right)\sin \left( B \right)$
2.$\cot \left( {A \pm B} \right) = \dfrac{{\cot A\cot B \mp 1}}{{\cot B \pm \cot A}}$
3.${\sin ^2}x + {\cos ^2}x = 1$
\[\cos \left( { - x} \right) = \cos \left( x \right)\]
We must know the values of trigonometric functions at common angles. Adding $\pi $ or multiples of $\pi $ with the angle retains the ratio and adding $\dfrac{\pi }{2}$ or odd multiples of $\dfrac{\pi }{2}$ will change the ratio.
Complete step-by-step answer:
We need to prove $\sin \left( {n + 1} \right)x\sin \left( {n + 2} \right)x + \cos \left( {n + 1} \right)x\cos \left( {n + 2} \right)x = \cos x$
Let us look at the LHS.
$LHS = \sin \left( {n + 1} \right)x\sin \left( {n + 2} \right)x + \cos \left( {n + 1} \right)x\cos \left( {n + 2} \right)x$
It is of the form $\sin A\sin B + \cos A\cos B$ where $A = \left( {n + 1} \right)x$ and $B = \left( {n + 2} \right)x$
We know that $\cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)$
We can substitute the values,
$ \Rightarrow \sin \left( {n + 1} \right)x\sin \left( {n + 2} \right)x + \cos \left( {n + 1} \right)x\cos \left( {n + 2} \right)x = \cos \left( {\left( {n + 1} \right)x - \left( {n + 2} \right)x} \right)$
Then the LHS becomes,
\[ \Rightarrow LHS = \cos \left( {\left( {n + 1} \right)x - \left( {n + 2} \right)x} \right)\]
We can simplify of the terms inside the cos function
On doing the multiplication, we get,
\[LHS = \cos \left( {\left( {nx + x} \right) - \left( {nx + 2x} \right)} \right)\]
Opening the brackets, we get,
\[LHS = \cos \left( {nx + x - nx - 2x} \right)\]
After simplification, we get,
\[LHS = \cos \left( { - x} \right)\]
We know that \[\cos \left( { - x} \right) = \cos \left( x \right)\]
$ \Rightarrow LHS = \cos \left( x \right)$.
RHS is also equal to\[\cos x\]. So, we can write,
$LHS = RHS$.
Hence the equation is proved.
Note: We must be familiar with the following trigonometric identities used in this problem.
1. $\cos \left( {A \pm B} \right) = \cos \left( A \right)\cos \left( B \right) \mp \sin \left( A \right)\sin \left( B \right)$
2.$\cot \left( {A \pm B} \right) = \dfrac{{\cot A\cot B \mp 1}}{{\cot B \pm \cot A}}$
3.${\sin ^2}x + {\cos ^2}x = 1$
\[\cos \left( { - x} \right) = \cos \left( x \right)\]
We must know the values of trigonometric functions at common angles. Adding $\pi $ or multiples of $\pi $ with the angle retains the ratio and adding $\dfrac{\pi }{2}$ or odd multiples of $\dfrac{\pi }{2}$ will change the ratio.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

