
Prove the following relation
\[\left( \dfrac{1}{{{\sec }^{2}}\theta -{{\cos }^{2}}\theta }+\dfrac{1}{{{\operatorname{cosec}}^{2}}\theta -{{\sin }^{2}}\theta } \right){{\sin }^{2}}\theta {{\cos }^{2}}\theta =\dfrac{1-{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{2+{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
Answer
612.3k+ views
Hint: To prove the required expression, we should know that \[\sec \theta \] can be written as \[\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta \] can be written as \[\dfrac{1}{\sin \theta }\]. Also, we should know a few algebraic identities like \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\] and \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]. By using these in the relation, we can prove the desired result.
Complete step-by-step answer:
In this question, we are asked to prove that
\[\left( \dfrac{1}{{{\sec }^{2}}\theta -{{\cos }^{2}}\theta }+\dfrac{1}{{{\operatorname{cosec}}^{2}}\theta -{{\sin }^{2}}\theta } \right){{\sin }^{2}}\theta {{\cos }^{2}}\theta =\dfrac{1-{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{2+{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
To prove this expression, we will first consider the left-hand side of the expression. So, we can write it as,
\[LHS=\left( \dfrac{1}{{{\sec }^{2}}\theta -{{\cos }^{2}}\theta }+\dfrac{1}{{{\operatorname{cosec}}^{2}}\theta -{{\sin }^{2}}\theta } \right){{\sin }^{2}}\theta {{\cos }^{2}}\theta \]
Now, we know that \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\]. So, we get LHS as,
\[LHS=\left( \dfrac{1}{\dfrac{1}{{{\cos }^{2}}\theta }-{{\cos }^{2}}\theta }+\dfrac{1}{\dfrac{1}{{{\sin }^{2}}\theta }-{{\sin }^{2}}\theta } \right){{\sin }^{2}}\theta {{\cos }^{2}}\theta \]
Now, we will take LCM of each term of LHS. So, we get,
\[LHS=\left[ \dfrac{1}{1-\dfrac{{{\cos }^{4}}\theta }{{{\cos }^{2}}\theta }}+\dfrac{1}{\dfrac{1-{{\sin }^{4}}\theta }{{{\sin }^{2}}\theta }} \right]{{\sin }^{2}}\theta {{\cos }^{2}}\theta \]
\[LHS=\left[ \dfrac{{{\cos }^{2}}\theta }{1-{{\cos }^{4}}\theta }+\dfrac{{{\sin }^{2}}\theta }{1-{{\sin }^{4}}\theta } \right]{{\sin }^{2}}\theta {{\cos }^{2}}\theta \]
Now, we know that \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]. So, we will get,
\[LHS=\left[ \dfrac{{{\cos }^{2}}\theta }{\left( 1-{{\cos }^{2}}\theta \right)\left( 1+{{\cos }^{2}}\theta \right)}+\dfrac{{{\sin }^{2}}\theta }{\left( 1-{{\sin }^{2}}\theta \right)\left( 1+{{\sin }^{2}}\theta \right)} \right]{{\sin }^{2}}\theta {{\cos }^{2}}\theta \]
Now, we also know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]. So, we can say that \[1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta \] and \[1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta \].
Therefore, we get LHS as,
\[LHS=\left[ \dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta \left( 1+{{\cos }^{2}}\theta \right)}+\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta \left( 1+{{\sin }^{2}}\theta \right)} \right]{{\sin }^{2}}\theta {{\cos }^{2}}\theta \]
Now, we will open brackets to simplify it further. So, we get,
\[LHS=\dfrac{{{\cos }^{4}}\theta {{\sin }^{2}}\theta }{{{\sin }^{2}}\theta \left( 1+{{\cos }^{2}}\theta \right)}+\dfrac{{{\sin }^{4}}\theta {{\cos }^{2}}\theta }{{{\cos }^{2}}\theta \left( 1+{{\sin }^{2}}\theta \right)}\]
\[LHS=\dfrac{{{\cos }^{4}}\theta }{1+{{\cos }^{2}}\theta }+\dfrac{{{\sin }^{4}}\theta }{1+{{\sin }^{2}}\theta }\]
Now, we will take LCM of both the terms. So, we will get,
\[LHS=\dfrac{{{\cos }^{4}}\theta \left( 1+{{\sin }^{2}}\theta \right)+{{\sin }^{4}}\theta \left( 1+{{\cos }^{2}}\theta \right)}{\left( 1+{{\cos }^{2}}\theta \right)\left( 1+{{\sin }^{2}}\theta \right)}\]
Again, we will open all the brackets to simplify it further, so we get,
\[LHS=\dfrac{{{\cos }^{4}}\theta +{{\sin }^{2}}\theta {{\cos }^{4}}\theta +{{\sin }^{4}}\theta +{{\sin }^{4}}\theta {{\cos }^{2}}\theta }{1+{{\cos }^{2}}\theta +{{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
Now, we can see that \[{{\sin }^{2}}\theta {{\cos }^{4}}\theta +{{\cos }^{2}}\theta {{\sin }^{4}}\theta \] can be written as \[{{\sin }^{2}}\theta {{\cos }^{2}}\theta \left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)\]. So, we get LHS as,
\[LHS=\dfrac{{{\cos }^{4}}\theta +{{\sin }^{4}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}{1+{{\cos }^{2}}\theta +{{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
We also know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]. Therefore, we will get LHS as,
\[LHS=\dfrac{{{\cos }^{4}}\theta +{{\sin }^{4}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta \left( 1 \right)}{1+1+{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
\[LHS=\dfrac{{{\cos }^{4}}\theta +{{\sin }^{4}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{2+{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
Now, we know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\] which can also be written as \[{{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab\]. Therefore, we can write \[{{\cos }^{4}}\theta +{{\sin }^{4}}\theta \] as \[{{\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}^{2}}-2{{\cos }^{2}}\theta {{\sin }^{2}}\theta \]. So, we will get LHS as
\[LHS=\dfrac{{{\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}^{2}}-2{{\cos }^{2}}\theta {{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{2+{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
\[LHS=\dfrac{{{\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}^{2}}-{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{2+{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
Now, we will again put \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]. So, we will get,
\[LHS=\dfrac{1-{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{2+{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
LHS = RHS
Hence proved
Note: In this question, there are lots of possibilities that we might make a calculation mistake. Also, we could have made a mistake while applying the algebraic formulas and trigonometric formulas. So, we have to be very patient while proving the expression.
Complete step-by-step answer:
In this question, we are asked to prove that
\[\left( \dfrac{1}{{{\sec }^{2}}\theta -{{\cos }^{2}}\theta }+\dfrac{1}{{{\operatorname{cosec}}^{2}}\theta -{{\sin }^{2}}\theta } \right){{\sin }^{2}}\theta {{\cos }^{2}}\theta =\dfrac{1-{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{2+{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
To prove this expression, we will first consider the left-hand side of the expression. So, we can write it as,
\[LHS=\left( \dfrac{1}{{{\sec }^{2}}\theta -{{\cos }^{2}}\theta }+\dfrac{1}{{{\operatorname{cosec}}^{2}}\theta -{{\sin }^{2}}\theta } \right){{\sin }^{2}}\theta {{\cos }^{2}}\theta \]
Now, we know that \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\]. So, we get LHS as,
\[LHS=\left( \dfrac{1}{\dfrac{1}{{{\cos }^{2}}\theta }-{{\cos }^{2}}\theta }+\dfrac{1}{\dfrac{1}{{{\sin }^{2}}\theta }-{{\sin }^{2}}\theta } \right){{\sin }^{2}}\theta {{\cos }^{2}}\theta \]
Now, we will take LCM of each term of LHS. So, we get,
\[LHS=\left[ \dfrac{1}{1-\dfrac{{{\cos }^{4}}\theta }{{{\cos }^{2}}\theta }}+\dfrac{1}{\dfrac{1-{{\sin }^{4}}\theta }{{{\sin }^{2}}\theta }} \right]{{\sin }^{2}}\theta {{\cos }^{2}}\theta \]
\[LHS=\left[ \dfrac{{{\cos }^{2}}\theta }{1-{{\cos }^{4}}\theta }+\dfrac{{{\sin }^{2}}\theta }{1-{{\sin }^{4}}\theta } \right]{{\sin }^{2}}\theta {{\cos }^{2}}\theta \]
Now, we know that \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]. So, we will get,
\[LHS=\left[ \dfrac{{{\cos }^{2}}\theta }{\left( 1-{{\cos }^{2}}\theta \right)\left( 1+{{\cos }^{2}}\theta \right)}+\dfrac{{{\sin }^{2}}\theta }{\left( 1-{{\sin }^{2}}\theta \right)\left( 1+{{\sin }^{2}}\theta \right)} \right]{{\sin }^{2}}\theta {{\cos }^{2}}\theta \]
Now, we also know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]. So, we can say that \[1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta \] and \[1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta \].
Therefore, we get LHS as,
\[LHS=\left[ \dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta \left( 1+{{\cos }^{2}}\theta \right)}+\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta \left( 1+{{\sin }^{2}}\theta \right)} \right]{{\sin }^{2}}\theta {{\cos }^{2}}\theta \]
Now, we will open brackets to simplify it further. So, we get,
\[LHS=\dfrac{{{\cos }^{4}}\theta {{\sin }^{2}}\theta }{{{\sin }^{2}}\theta \left( 1+{{\cos }^{2}}\theta \right)}+\dfrac{{{\sin }^{4}}\theta {{\cos }^{2}}\theta }{{{\cos }^{2}}\theta \left( 1+{{\sin }^{2}}\theta \right)}\]
\[LHS=\dfrac{{{\cos }^{4}}\theta }{1+{{\cos }^{2}}\theta }+\dfrac{{{\sin }^{4}}\theta }{1+{{\sin }^{2}}\theta }\]
Now, we will take LCM of both the terms. So, we will get,
\[LHS=\dfrac{{{\cos }^{4}}\theta \left( 1+{{\sin }^{2}}\theta \right)+{{\sin }^{4}}\theta \left( 1+{{\cos }^{2}}\theta \right)}{\left( 1+{{\cos }^{2}}\theta \right)\left( 1+{{\sin }^{2}}\theta \right)}\]
Again, we will open all the brackets to simplify it further, so we get,
\[LHS=\dfrac{{{\cos }^{4}}\theta +{{\sin }^{2}}\theta {{\cos }^{4}}\theta +{{\sin }^{4}}\theta +{{\sin }^{4}}\theta {{\cos }^{2}}\theta }{1+{{\cos }^{2}}\theta +{{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
Now, we can see that \[{{\sin }^{2}}\theta {{\cos }^{4}}\theta +{{\cos }^{2}}\theta {{\sin }^{4}}\theta \] can be written as \[{{\sin }^{2}}\theta {{\cos }^{2}}\theta \left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)\]. So, we get LHS as,
\[LHS=\dfrac{{{\cos }^{4}}\theta +{{\sin }^{4}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}{1+{{\cos }^{2}}\theta +{{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
We also know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]. Therefore, we will get LHS as,
\[LHS=\dfrac{{{\cos }^{4}}\theta +{{\sin }^{4}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta \left( 1 \right)}{1+1+{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
\[LHS=\dfrac{{{\cos }^{4}}\theta +{{\sin }^{4}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{2+{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
Now, we know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\] which can also be written as \[{{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab\]. Therefore, we can write \[{{\cos }^{4}}\theta +{{\sin }^{4}}\theta \] as \[{{\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}^{2}}-2{{\cos }^{2}}\theta {{\sin }^{2}}\theta \]. So, we will get LHS as
\[LHS=\dfrac{{{\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}^{2}}-2{{\cos }^{2}}\theta {{\sin }^{2}}\theta +{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{2+{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
\[LHS=\dfrac{{{\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}^{2}}-{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{2+{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
Now, we will again put \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]. So, we will get,
\[LHS=\dfrac{1-{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{2+{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
LHS = RHS
Hence proved
Note: In this question, there are lots of possibilities that we might make a calculation mistake. Also, we could have made a mistake while applying the algebraic formulas and trigonometric formulas. So, we have to be very patient while proving the expression.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

