
Prove the following identities:
1) \[({\sin ^8}\theta - {\cos ^8}\theta ) = ({\sin ^2}\theta - {\cos ^2}\theta )(1 - 2{\sin ^2}\theta {\cos ^2}\theta )\]
2) \[{(1 + \tan A\tan B)^2} + {(\tan A - \tan B)^2} = {\sec ^2}A{\sec ^2}B\]
3) \[{(\tan A + \cos ecB)^2} - {(\cot B - \sec A)^2} = 2\tan A\cot B(\cos ecA + \sec B)\]
Answer
513.6k+ views
Hint:
(1) We prove the first identity using the concept of breaking the powers of 8 in a way that they open up as square of first term minus square of second term which can be opened with help of \[(a - b)(a + b) = {a^2} - {b^2}\].
Also, we know \[{a^{mn}} = {({a^m})^n}\]
(2) We prove this identity by general opening of brackets using the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] and then substitute \[1 + {\tan ^2}\theta = {\sec ^2}\theta \] wherever required.
(3) We prove this identity by general opening of brackets using the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] and then substitute \[1 + {\tan ^2}\theta = {\sec ^2}\theta \] and \[1 + {\cot ^2}\theta = \cos e{c^2}\theta \] wherever required.
Complete step-by-step answer:
(1) \[({\sin ^8}\theta - {\cos ^8}\theta ) = ({\sin ^2}\theta - {\cos ^2}\theta )(1 - 2{\sin ^2}\theta {\cos ^2}\theta )\]
We can write \[8 = 4 \times 2\]
Therefore, LHS of the equation becomes
\[ \Rightarrow {({\sin ^4}\theta )^2} - {({\cos ^4}\theta )^2}\]
We know that \[(a - b)(a + b) = {a^2} - {b^2}\]
Substituting \[a = ({\sin ^4}\theta ), b = ({\cos ^4}\theta )\]
\[ \Rightarrow {({\sin ^4}\theta )^2} - {({\cos ^4}\theta )^2} = \left( {({{\sin }^4}\theta ) - ({{\cos }^4}\theta )} \right) \times \left( {({{\sin }^4}\theta ) + ({{\cos }^4}\theta )} \right)\]
We can write \[4 = 2 \times 2\]
We know that \[(a - b)(a + b) = {a^2} - {b^2}\]
Substituting \[a = ({\sin ^2}\theta ), b = ({\cos ^2}\theta )\] in the first bracket and breaking the powers in the second bracket.
\[ \Rightarrow {({\sin ^4}\theta )^2} - {({\cos ^4}\theta )^2} = \left( {({{\sin }^2}\theta - {{\cos }^2}\theta ) \times ({{\sin }^2}\theta + {{\cos }^2}\theta )} \right) \times \left( {{{({{\sin }^2}\theta )}^2} + {{({{\cos }^2}\theta )}^2}} \right)\]
Substitute the value of \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] in the equation.
\[ \Rightarrow {({\sin ^4}\theta )^2} - {({\cos ^4}\theta )^2} = \left( {{{\sin }^2}\theta - {{\cos }^2}\theta } \right) \times \left( {{{({{\sin }^2}\theta )}^2} + {{({{\cos }^2}\theta )}^2}} \right)\] … (i)
Now we know \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
Substituting \[a = ({\sin ^2}\theta ),b = ({\cos ^2}\theta )\]
\[ \Rightarrow {({\sin ^2}\theta + {\cos ^2}\theta )^2} = {({\sin ^2}\theta )^2} + {({\cos ^2}\theta )^2} + 2{\sin ^2}\theta {\cos ^2}\theta \]
We can write by shifting the terms
\[ \Rightarrow {({\sin ^2}\theta + {\cos ^2}\theta )^2} - 2{\sin ^2}\theta {\cos ^2}\theta = {({\sin ^2}\theta )^2} + {({\cos ^2}\theta )^2}\]
Substituting the value of \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
\[
\Rightarrow {(1)^2} - 2{\sin ^2}\theta {\cos ^2}\theta = {({\sin ^2}\theta )^2} + {({\cos ^2}\theta )^2} \\
\Rightarrow 1 - 2{\sin ^2}\theta {\cos ^2}\theta = {({\sin ^2}\theta )^2} + {({\cos ^2}\theta )^2} \\
\] … (ii)
Substituting the value from equation (ii) in equation (i)
\[ \Rightarrow {({\sin ^4}\theta )^2} - {({\cos ^4}\theta )^2} = \left( {{{\sin }^2}\theta - {{\cos }^2}\theta } \right) \times \left( {1 - 2{{\sin }^2}\theta {{\cos }^2}\theta } \right)\]
This is equal to the LHS of the equation.
Hence Proved.
(2) \[{(1 + \tan A\tan B)^2} + {(\tan A - \tan B)^2} = {\sec ^2}A{\sec ^2}B\]
Consider the LHS of the equation.
Since, we know \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
Substituting \[a = 1, b = \tan A\tan B\]
\[ \Rightarrow {(1 + \tan A\tan B)^2} = 1 + {\tan ^2}A{\tan ^2}B + 2\tan A\tan B\] … (iii)
Since, we know \[{(a - b)^2} = {a^2} + {b^2} - 2ab\]
Substituting \[a = \tan A, b = \tan B\] in the formula
\[ \Rightarrow {(\tan A - \tan B)^2} = {\tan ^2}A + {\tan ^2}B - 2\tan A\tan B\] … (iv)
Substituting values from equation (iii) and (iv) in LHS we get
\[ \Rightarrow 1 + {\tan ^2}A{\tan ^2}B + 2\tan A\tan B + {\tan ^2}A + {\tan ^2}B - 2\tan A\tan B\]
Cancel out the terms with opposite sign
\[
\Rightarrow 1 + {\tan ^2}A{\tan ^2}B + {\tan ^2}A + {\tan ^2}B \\
\Rightarrow 1 + {\tan ^2}A + {\tan ^2}B + {\tan ^2}A{\tan ^2}B \\
\]
Now we group together \[\left( {1 + {{\tan }^2}A} \right)\] as first part and make factors by taking common \[\left( {{{\tan }^2}B} \right)\] in second part
\[
\Rightarrow (1 + {\tan ^2}A) + {\tan ^2}B(1 + {\tan ^2}A) \\
\Rightarrow (1 + {\tan ^2}A)(1 + {\tan ^2}B) \\
\]
Since we know \[1 + {\tan ^2}\theta = {\sec ^2}\theta \]
\[ \Rightarrow {\sec ^2}A{\sec ^2}B\]
This is equal to the RHS of the equation.
Hence Proved.
(3) \[{(\tan A + \cos ecB)^2} - {(\cot B - \sec A)^2} = 2\tan A\cot B(\cos ecA + \sec B)\]
Consider the LHS of the equation.
Since, we know \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
Substituting \[a = \tan A, b = \cos ecB\]
\[ \Rightarrow {(\tan A + \cos ecB)^2} = {\tan ^2}A + \cos e{c^2}B + 2\tan A\cos ecB\] … (iii)
Now substituting \[a = \cot B, b = \sec A\] in the formula \[{(a - b)^2} = {a^2} + {b^2} - 2ab\]
\[ \Rightarrow {(\cot B - \sec A)^2} = {\cot ^2}B + {\sec ^2}A - 2\cot B\sec A\] … (iv)
Substituting values from equation (iii) and (iv) in LHS we get
\[
\Rightarrow ({\tan ^2}A + \cos e{c^2}B + 2\tan A\cos ecB) - ({\cot ^2}B + {\sec ^2}A - 2\cot B\sec A) \\
\Rightarrow {\tan ^2}A + \cos e{c^2}B + 2\tan A\cos ecB - {\cot ^2}B - {\sec ^2}A + 2\cot B\sec A \\
\Rightarrow {\tan ^2}A - {\sec ^2}A + \cos e{c^2}B - {\cot ^2}B + 2\tan A\cos ecB + 2\cot B\sec A \\
\]
Substitute the values from the identities \[\left( {{{\tan }^2}\theta = {{\sec }^2}\theta - 1} \right)\] and \[\left( {1 + {{\cot }^2}\theta = \cos e{c^2}\theta } \right)\]
\[
\Rightarrow ({\sec ^2}A - 1) - {\sec ^2}A + (1 + {\cot ^2}B) - {\cot ^2}B + 2\tan A\cos ecB + 2\cot B\sec A \\
\Rightarrow - 1 + 1 + 2\tan A\cos ecB + 2\cot B\sec A \\
\Rightarrow 2\tan A\cos ecB + 2\cot B\sec A \\
\]
Now we divide and multiply first term by \[\left( {\cos B} \right)\] and divide and multiply second term by \[\left( {\sin A} \right)\]
\[ \Rightarrow 2\tan A\cos ecB\dfrac{{\cos B}}{{\cos B}} + 2\cot B\sec A\dfrac{{\sin A}}{{\sin A}}\]
Now we can write \[\left( {\cos ecB = \dfrac{1}{{\sin B}}} \right),\left( {\sec A = \dfrac{1}{{\cos A}}} \right)\]
\[
\Rightarrow 2\tan A\dfrac{1}{{\sin B}}\dfrac{{\cos B}}{{\cos B}} + 2\cot B\dfrac{1}{{\cos A}}\dfrac{{\sin A}}{{\sin A}} \\
\Rightarrow 2\tan A\dfrac{{\cos B}}{{\sin B}}\dfrac{1}{{\cos B}} + 2\cot B\dfrac{{\sin A}}{{\cos A}}\dfrac{1}{{\sin A}} \\
\]
Now write \[\left( {\dfrac{{\cos B}}{{\sin B}} = \cot B} \right),\left( {\dfrac{1}{{\cos B}} = \sec B} \right),\left( {\dfrac{{\sin A}}{{\cos A}} = \tan A} \right),\left( {\dfrac{1}{{\sin A}} = \cos ecA} \right)\]
\[
\Rightarrow 2\tan A\cot B\sec B + 2\cot B\tan A\cos ecA \\
\Rightarrow 2\tan A\cot B(\sec B + \cos ecA) \\
\]
This is equal to the LHS of the equation.
Hence Proved.
Note: Students many times make the mistake of substituting wrong values in the formula, they should always do substitution of angle and then open up the identity according to the formula.
(1) We prove the first identity using the concept of breaking the powers of 8 in a way that they open up as square of first term minus square of second term which can be opened with help of \[(a - b)(a + b) = {a^2} - {b^2}\].
Also, we know \[{a^{mn}} = {({a^m})^n}\]
(2) We prove this identity by general opening of brackets using the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] and then substitute \[1 + {\tan ^2}\theta = {\sec ^2}\theta \] wherever required.
(3) We prove this identity by general opening of brackets using the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] and then substitute \[1 + {\tan ^2}\theta = {\sec ^2}\theta \] and \[1 + {\cot ^2}\theta = \cos e{c^2}\theta \] wherever required.
Complete step-by-step answer:
(1) \[({\sin ^8}\theta - {\cos ^8}\theta ) = ({\sin ^2}\theta - {\cos ^2}\theta )(1 - 2{\sin ^2}\theta {\cos ^2}\theta )\]
We can write \[8 = 4 \times 2\]
Therefore, LHS of the equation becomes
\[ \Rightarrow {({\sin ^4}\theta )^2} - {({\cos ^4}\theta )^2}\]
We know that \[(a - b)(a + b) = {a^2} - {b^2}\]
Substituting \[a = ({\sin ^4}\theta ), b = ({\cos ^4}\theta )\]
\[ \Rightarrow {({\sin ^4}\theta )^2} - {({\cos ^4}\theta )^2} = \left( {({{\sin }^4}\theta ) - ({{\cos }^4}\theta )} \right) \times \left( {({{\sin }^4}\theta ) + ({{\cos }^4}\theta )} \right)\]
We can write \[4 = 2 \times 2\]
We know that \[(a - b)(a + b) = {a^2} - {b^2}\]
Substituting \[a = ({\sin ^2}\theta ), b = ({\cos ^2}\theta )\] in the first bracket and breaking the powers in the second bracket.
\[ \Rightarrow {({\sin ^4}\theta )^2} - {({\cos ^4}\theta )^2} = \left( {({{\sin }^2}\theta - {{\cos }^2}\theta ) \times ({{\sin }^2}\theta + {{\cos }^2}\theta )} \right) \times \left( {{{({{\sin }^2}\theta )}^2} + {{({{\cos }^2}\theta )}^2}} \right)\]
Substitute the value of \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] in the equation.
\[ \Rightarrow {({\sin ^4}\theta )^2} - {({\cos ^4}\theta )^2} = \left( {{{\sin }^2}\theta - {{\cos }^2}\theta } \right) \times \left( {{{({{\sin }^2}\theta )}^2} + {{({{\cos }^2}\theta )}^2}} \right)\] … (i)
Now we know \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
Substituting \[a = ({\sin ^2}\theta ),b = ({\cos ^2}\theta )\]
\[ \Rightarrow {({\sin ^2}\theta + {\cos ^2}\theta )^2} = {({\sin ^2}\theta )^2} + {({\cos ^2}\theta )^2} + 2{\sin ^2}\theta {\cos ^2}\theta \]
We can write by shifting the terms
\[ \Rightarrow {({\sin ^2}\theta + {\cos ^2}\theta )^2} - 2{\sin ^2}\theta {\cos ^2}\theta = {({\sin ^2}\theta )^2} + {({\cos ^2}\theta )^2}\]
Substituting the value of \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
\[
\Rightarrow {(1)^2} - 2{\sin ^2}\theta {\cos ^2}\theta = {({\sin ^2}\theta )^2} + {({\cos ^2}\theta )^2} \\
\Rightarrow 1 - 2{\sin ^2}\theta {\cos ^2}\theta = {({\sin ^2}\theta )^2} + {({\cos ^2}\theta )^2} \\
\] … (ii)
Substituting the value from equation (ii) in equation (i)
\[ \Rightarrow {({\sin ^4}\theta )^2} - {({\cos ^4}\theta )^2} = \left( {{{\sin }^2}\theta - {{\cos }^2}\theta } \right) \times \left( {1 - 2{{\sin }^2}\theta {{\cos }^2}\theta } \right)\]
This is equal to the LHS of the equation.
Hence Proved.
(2) \[{(1 + \tan A\tan B)^2} + {(\tan A - \tan B)^2} = {\sec ^2}A{\sec ^2}B\]
Consider the LHS of the equation.
Since, we know \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
Substituting \[a = 1, b = \tan A\tan B\]
\[ \Rightarrow {(1 + \tan A\tan B)^2} = 1 + {\tan ^2}A{\tan ^2}B + 2\tan A\tan B\] … (iii)
Since, we know \[{(a - b)^2} = {a^2} + {b^2} - 2ab\]
Substituting \[a = \tan A, b = \tan B\] in the formula
\[ \Rightarrow {(\tan A - \tan B)^2} = {\tan ^2}A + {\tan ^2}B - 2\tan A\tan B\] … (iv)
Substituting values from equation (iii) and (iv) in LHS we get
\[ \Rightarrow 1 + {\tan ^2}A{\tan ^2}B + 2\tan A\tan B + {\tan ^2}A + {\tan ^2}B - 2\tan A\tan B\]
Cancel out the terms with opposite sign
\[
\Rightarrow 1 + {\tan ^2}A{\tan ^2}B + {\tan ^2}A + {\tan ^2}B \\
\Rightarrow 1 + {\tan ^2}A + {\tan ^2}B + {\tan ^2}A{\tan ^2}B \\
\]
Now we group together \[\left( {1 + {{\tan }^2}A} \right)\] as first part and make factors by taking common \[\left( {{{\tan }^2}B} \right)\] in second part
\[
\Rightarrow (1 + {\tan ^2}A) + {\tan ^2}B(1 + {\tan ^2}A) \\
\Rightarrow (1 + {\tan ^2}A)(1 + {\tan ^2}B) \\
\]
Since we know \[1 + {\tan ^2}\theta = {\sec ^2}\theta \]
\[ \Rightarrow {\sec ^2}A{\sec ^2}B\]
This is equal to the RHS of the equation.
Hence Proved.
(3) \[{(\tan A + \cos ecB)^2} - {(\cot B - \sec A)^2} = 2\tan A\cot B(\cos ecA + \sec B)\]
Consider the LHS of the equation.
Since, we know \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
Substituting \[a = \tan A, b = \cos ecB\]
\[ \Rightarrow {(\tan A + \cos ecB)^2} = {\tan ^2}A + \cos e{c^2}B + 2\tan A\cos ecB\] … (iii)
Now substituting \[a = \cot B, b = \sec A\] in the formula \[{(a - b)^2} = {a^2} + {b^2} - 2ab\]
\[ \Rightarrow {(\cot B - \sec A)^2} = {\cot ^2}B + {\sec ^2}A - 2\cot B\sec A\] … (iv)
Substituting values from equation (iii) and (iv) in LHS we get
\[
\Rightarrow ({\tan ^2}A + \cos e{c^2}B + 2\tan A\cos ecB) - ({\cot ^2}B + {\sec ^2}A - 2\cot B\sec A) \\
\Rightarrow {\tan ^2}A + \cos e{c^2}B + 2\tan A\cos ecB - {\cot ^2}B - {\sec ^2}A + 2\cot B\sec A \\
\Rightarrow {\tan ^2}A - {\sec ^2}A + \cos e{c^2}B - {\cot ^2}B + 2\tan A\cos ecB + 2\cot B\sec A \\
\]
Substitute the values from the identities \[\left( {{{\tan }^2}\theta = {{\sec }^2}\theta - 1} \right)\] and \[\left( {1 + {{\cot }^2}\theta = \cos e{c^2}\theta } \right)\]
\[
\Rightarrow ({\sec ^2}A - 1) - {\sec ^2}A + (1 + {\cot ^2}B) - {\cot ^2}B + 2\tan A\cos ecB + 2\cot B\sec A \\
\Rightarrow - 1 + 1 + 2\tan A\cos ecB + 2\cot B\sec A \\
\Rightarrow 2\tan A\cos ecB + 2\cot B\sec A \\
\]
Now we divide and multiply first term by \[\left( {\cos B} \right)\] and divide and multiply second term by \[\left( {\sin A} \right)\]
\[ \Rightarrow 2\tan A\cos ecB\dfrac{{\cos B}}{{\cos B}} + 2\cot B\sec A\dfrac{{\sin A}}{{\sin A}}\]
Now we can write \[\left( {\cos ecB = \dfrac{1}{{\sin B}}} \right),\left( {\sec A = \dfrac{1}{{\cos A}}} \right)\]
\[
\Rightarrow 2\tan A\dfrac{1}{{\sin B}}\dfrac{{\cos B}}{{\cos B}} + 2\cot B\dfrac{1}{{\cos A}}\dfrac{{\sin A}}{{\sin A}} \\
\Rightarrow 2\tan A\dfrac{{\cos B}}{{\sin B}}\dfrac{1}{{\cos B}} + 2\cot B\dfrac{{\sin A}}{{\cos A}}\dfrac{1}{{\sin A}} \\
\]
Now write \[\left( {\dfrac{{\cos B}}{{\sin B}} = \cot B} \right),\left( {\dfrac{1}{{\cos B}} = \sec B} \right),\left( {\dfrac{{\sin A}}{{\cos A}} = \tan A} \right),\left( {\dfrac{1}{{\sin A}} = \cos ecA} \right)\]
\[
\Rightarrow 2\tan A\cot B\sec B + 2\cot B\tan A\cos ecA \\
\Rightarrow 2\tan A\cot B(\sec B + \cos ecA) \\
\]
This is equal to the LHS of the equation.
Hence Proved.
Note: Students many times make the mistake of substituting wrong values in the formula, they should always do substitution of angle and then open up the identity according to the formula.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
