
Prove the following expression:
\[\sin {{10}^{\circ }}\sin {{30}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }}=\dfrac{1}{16}\]
Answer
600.9k+ views
Hint: We can write the terms together such that they make the pair of \[\sin {{10}^{{}^\circ }}\sin {{70}^{{}^\circ }}\] and \[\sin {{30}^{{}^\circ }}\sin {{50}^{{}^\circ }}\] now, multiply numerator and denominator of both the pairs by 2. And now, we can simplify them using \[2\sin a\times \sin b=\cos \left( a-b \right)-\cos \left( a+b \right)\], \[2\cos a\times \cos b=\cos \left( a+b \right)+\cos \left( a-b \right)\] and we can use \[\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\times \cos \left( \dfrac{a-b}{2} \right)\].
Complete step-by-step answer:
In this question, we have to prove that, \[\sin {{10}^{\circ }}\sin {{30}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }}=\dfrac{1}{16}\]. To prove this, first we will consider left hand side, that is, \[\sin {{10}^{\circ }}\sin {{30}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }}\], which we can write as \[\left( \sin {{10}^{\circ }}\sin {{70}^{\circ }} \right)\left( \sin {{30}^{\circ }}\sin {{50}^{\circ }} \right)\]
We know that \[2\sin a\times \sin b=\cos \left( a-b \right)-\cos \left( a+b \right)\]
So to apply this formula we need 2 in numerator with both the terms and to get that we will multiply and divide both terms by 2, so we will get,
\[\left( \dfrac{2}{2}\sin {{10}^{\circ }}\sin {{70}^{\circ }} \right)\left( \dfrac{2}{2}\sin {{30}^{\circ }}\sin {{50}^{\circ }} \right)\]
Now, applying the formula, \[2\sin a\times \sin b=\cos \left( a-b \right)-\cos \left( a+b \right)\], so, we will get L.H.S. as,
\[\dfrac{1}{4}\left( \cos \left( {{70}^{\circ }}-{{10}^{\circ }} \right)-\cos \left( {{70}^{\circ }}+{{10}^{\circ }} \right) \right)\left( \cos \left( {{50}^{\circ }}-{{30}^{\circ }} \right)-\cos \left( {{50}^{\circ }}+{{30}^{\circ }} \right) \right)\]
\[\Rightarrow \dfrac{1}{4}\left( \cos \left( {{60}^{\circ }} \right)-\cos \left( {{80}^{\circ }} \right) \right)\left( \cos \left( {{20}^{\circ }} \right)-\cos \left( {{80}^{\circ }} \right) \right)\]
Now, we will open brackets to get more simplified form
\[\Rightarrow \dfrac{1}{4}\left( \cos \left( {{60}^{\circ }} \right)\cos \left( {{20}^{\circ }} \right)-\cos \left( {{60}^{\circ }} \right)\cos \left( {{80}^{\circ }} \right)-\cos \left( {{20}^{\circ }} \right)\cos \left( {{80}^{\circ }} \right)+{{\cos }^{2}}\left( {{80}^{\circ }} \right) \right)\]
Now, we know \[2\cos a\times \cos b=\cos \left( a+b \right)+\cos \left( a-b \right)\], so to apply this formula, we will multiply and divide each term of above expression by 2, so we will get L.H.S. as,
\[\dfrac{1}{4}\left( \dfrac{2}{2}\cos \left( {{60}^{\circ }} \right)\cos \left( {{20}^{\circ }} \right)-\dfrac{2}{2}\cos \left( {{60}^{\circ }} \right)\cos \left( {{80}^{\circ }} \right)-\dfrac{2}{2}\cos \left( {{20}^{\circ }} \right)\cos \left( {{80}^{\circ }} \right)+\dfrac{2}{2}{{\cos }^{2}}\left( {{80}^{\circ }} \right) \right)\]
Now, we are applying the formula, \[2\cos a\times \cos b=\cos \left( a+b \right)+\cos \left( a-b \right)\], so we get L.H.S. as,
\[\Rightarrow \dfrac{1}{8}\left( \cos {{80}^{\circ }}+\cos {{40}^{\circ }}-\cos {{140}^{\circ }}-\cos {{20}^{\circ }}-\cos {{100}^{\circ }}-\cos {{60}^{\circ }}+\cos {{0}^{\circ }}+\cos {{160}^{\circ }} \right)\]
Now, we know that, \[\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta \], and we can write L.H.S. as \[\dfrac{1}{8}\left( \cos {{80}^{\circ }}+\cos {{40}^{\circ }}-\cos \left( {{180}^{\circ }}-{{40}^{\circ }} \right)-\cos {{20}^{\circ }}-\cos \left( {{180}^{\circ }}-{{80}^{\circ }} \right)-\cos {{60}^{\circ }}+\cos {{0}^{\circ }}+\cos \left( {{180}^{\circ }}-{{20}^{\circ }} \right) \right)\]
Therefore, L.H.S.= \[\dfrac{1}{8}\left( \cos {{80}^{\circ }}+\cos {{40}^{\circ }}+\cos {{40}^{\circ }}-\cos {{20}^{\circ }}+\cos {{80}^{\circ }}-\cos {{60}^{\circ }}+\cos {{0}^{\circ }}-\cos {{20}^{\circ }} \right)\]
We know that, \[\cos {{60}^{\circ }}=\dfrac{1}{2}\] and \[\cos {{0}^{\circ }}=1\], therefore, we can write L.H.S. as,
\[\dfrac{1}{8}\left( \cos {{80}^{\circ }}+\cos {{40}^{\circ }}+\cos {{40}^{\circ }}-\cos {{20}^{\circ }}+\cos {{80}^{\circ }}-\dfrac{1}{2}+1-\cos {{20}^{\circ }} \right)\]
\[\Rightarrow \dfrac{1}{8}\left( 2\cos {{80}^{\circ }}+2\cos {{40}^{\circ }}-2\cos {{20}^{\circ }}+\dfrac{1}{2} \right)\]
Here, we will take 2 common from every term inside the bracket, so we will get,
\[\Rightarrow \dfrac{2}{8}\left( \cos {{80}^{\circ }}+\cos {{40}^{\circ }}-\cos {{20}^{\circ }}+\dfrac{1}{4} \right)\]
Now, we will apply \[\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\times \cos \left( \dfrac{a-b}{2} \right)\] formula among \[\cos {{80}^{\circ }}\]and \[\cos {{40}^{\circ }}\], so we will get L.H.S. as,
\[\dfrac{1}{4}\left( 2\cos \left( \dfrac{{{80}^{\circ }}+{{40}^{\circ }}}{2} \right)\times \cos \left( \dfrac{{{80}^{\circ }}-{{40}^{\circ }}}{2} \right)-\cos {{20}^{\circ }}+\dfrac{1}{4} \right)\]
On further simplifying this, we will get,
\[\Rightarrow \dfrac{1}{4}\left( 2\cos \left( {{60}^{{}^\circ }} \right)\times \cos \left( {{20}^{{}^\circ }} \right)-\cos {{20}^{\circ }}+\dfrac{1}{4} \right)\]
\[\Rightarrow \dfrac{1}{4}\left( \left( 2\cos \left( {{60}^{{}^\circ }} \right)-1 \right)\cos {{20}^{\circ }}+\dfrac{1}{4} \right)\]
\[\Rightarrow \dfrac{1}{4}\left( \left( 2\times \dfrac{1}{2}-1 \right)\cos {{20}^{\circ }}+\dfrac{1}{4} \right)\]
\[\Rightarrow \dfrac{1}{4}\left( \left( 1-1 \right)\cos {{20}^{\circ }}+\dfrac{1}{4} \right)\]
\[\Rightarrow \dfrac{1}{4}\left( \left( 0 \right)\cos {{20}^{\circ }}+\dfrac{1}{4} \right)\]
\[\Rightarrow \dfrac{1}{4}\left( 0+\dfrac{1}{4} \right)\]
\[\Rightarrow \dfrac{1}{16}\]
= R.H.S.
Hence, we have proved that \[\sin {{10}^{\circ }}\sin {{30}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }}=\dfrac{1}{16}\]
Note: The possible mistakes one can make in the question is that mistake in writing formulas which will mislead our solution. So, we will not be able to prove the desired result. Also, considering the wrong terms while applying formulas will make the question more complicated and lengthier.
Complete step-by-step answer:
In this question, we have to prove that, \[\sin {{10}^{\circ }}\sin {{30}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }}=\dfrac{1}{16}\]. To prove this, first we will consider left hand side, that is, \[\sin {{10}^{\circ }}\sin {{30}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }}\], which we can write as \[\left( \sin {{10}^{\circ }}\sin {{70}^{\circ }} \right)\left( \sin {{30}^{\circ }}\sin {{50}^{\circ }} \right)\]
We know that \[2\sin a\times \sin b=\cos \left( a-b \right)-\cos \left( a+b \right)\]
So to apply this formula we need 2 in numerator with both the terms and to get that we will multiply and divide both terms by 2, so we will get,
\[\left( \dfrac{2}{2}\sin {{10}^{\circ }}\sin {{70}^{\circ }} \right)\left( \dfrac{2}{2}\sin {{30}^{\circ }}\sin {{50}^{\circ }} \right)\]
Now, applying the formula, \[2\sin a\times \sin b=\cos \left( a-b \right)-\cos \left( a+b \right)\], so, we will get L.H.S. as,
\[\dfrac{1}{4}\left( \cos \left( {{70}^{\circ }}-{{10}^{\circ }} \right)-\cos \left( {{70}^{\circ }}+{{10}^{\circ }} \right) \right)\left( \cos \left( {{50}^{\circ }}-{{30}^{\circ }} \right)-\cos \left( {{50}^{\circ }}+{{30}^{\circ }} \right) \right)\]
\[\Rightarrow \dfrac{1}{4}\left( \cos \left( {{60}^{\circ }} \right)-\cos \left( {{80}^{\circ }} \right) \right)\left( \cos \left( {{20}^{\circ }} \right)-\cos \left( {{80}^{\circ }} \right) \right)\]
Now, we will open brackets to get more simplified form
\[\Rightarrow \dfrac{1}{4}\left( \cos \left( {{60}^{\circ }} \right)\cos \left( {{20}^{\circ }} \right)-\cos \left( {{60}^{\circ }} \right)\cos \left( {{80}^{\circ }} \right)-\cos \left( {{20}^{\circ }} \right)\cos \left( {{80}^{\circ }} \right)+{{\cos }^{2}}\left( {{80}^{\circ }} \right) \right)\]
Now, we know \[2\cos a\times \cos b=\cos \left( a+b \right)+\cos \left( a-b \right)\], so to apply this formula, we will multiply and divide each term of above expression by 2, so we will get L.H.S. as,
\[\dfrac{1}{4}\left( \dfrac{2}{2}\cos \left( {{60}^{\circ }} \right)\cos \left( {{20}^{\circ }} \right)-\dfrac{2}{2}\cos \left( {{60}^{\circ }} \right)\cos \left( {{80}^{\circ }} \right)-\dfrac{2}{2}\cos \left( {{20}^{\circ }} \right)\cos \left( {{80}^{\circ }} \right)+\dfrac{2}{2}{{\cos }^{2}}\left( {{80}^{\circ }} \right) \right)\]
Now, we are applying the formula, \[2\cos a\times \cos b=\cos \left( a+b \right)+\cos \left( a-b \right)\], so we get L.H.S. as,
\[\Rightarrow \dfrac{1}{8}\left( \cos {{80}^{\circ }}+\cos {{40}^{\circ }}-\cos {{140}^{\circ }}-\cos {{20}^{\circ }}-\cos {{100}^{\circ }}-\cos {{60}^{\circ }}+\cos {{0}^{\circ }}+\cos {{160}^{\circ }} \right)\]
Now, we know that, \[\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta \], and we can write L.H.S. as \[\dfrac{1}{8}\left( \cos {{80}^{\circ }}+\cos {{40}^{\circ }}-\cos \left( {{180}^{\circ }}-{{40}^{\circ }} \right)-\cos {{20}^{\circ }}-\cos \left( {{180}^{\circ }}-{{80}^{\circ }} \right)-\cos {{60}^{\circ }}+\cos {{0}^{\circ }}+\cos \left( {{180}^{\circ }}-{{20}^{\circ }} \right) \right)\]
Therefore, L.H.S.= \[\dfrac{1}{8}\left( \cos {{80}^{\circ }}+\cos {{40}^{\circ }}+\cos {{40}^{\circ }}-\cos {{20}^{\circ }}+\cos {{80}^{\circ }}-\cos {{60}^{\circ }}+\cos {{0}^{\circ }}-\cos {{20}^{\circ }} \right)\]
We know that, \[\cos {{60}^{\circ }}=\dfrac{1}{2}\] and \[\cos {{0}^{\circ }}=1\], therefore, we can write L.H.S. as,
\[\dfrac{1}{8}\left( \cos {{80}^{\circ }}+\cos {{40}^{\circ }}+\cos {{40}^{\circ }}-\cos {{20}^{\circ }}+\cos {{80}^{\circ }}-\dfrac{1}{2}+1-\cos {{20}^{\circ }} \right)\]
\[\Rightarrow \dfrac{1}{8}\left( 2\cos {{80}^{\circ }}+2\cos {{40}^{\circ }}-2\cos {{20}^{\circ }}+\dfrac{1}{2} \right)\]
Here, we will take 2 common from every term inside the bracket, so we will get,
\[\Rightarrow \dfrac{2}{8}\left( \cos {{80}^{\circ }}+\cos {{40}^{\circ }}-\cos {{20}^{\circ }}+\dfrac{1}{4} \right)\]
Now, we will apply \[\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\times \cos \left( \dfrac{a-b}{2} \right)\] formula among \[\cos {{80}^{\circ }}\]and \[\cos {{40}^{\circ }}\], so we will get L.H.S. as,
\[\dfrac{1}{4}\left( 2\cos \left( \dfrac{{{80}^{\circ }}+{{40}^{\circ }}}{2} \right)\times \cos \left( \dfrac{{{80}^{\circ }}-{{40}^{\circ }}}{2} \right)-\cos {{20}^{\circ }}+\dfrac{1}{4} \right)\]
On further simplifying this, we will get,
\[\Rightarrow \dfrac{1}{4}\left( 2\cos \left( {{60}^{{}^\circ }} \right)\times \cos \left( {{20}^{{}^\circ }} \right)-\cos {{20}^{\circ }}+\dfrac{1}{4} \right)\]
\[\Rightarrow \dfrac{1}{4}\left( \left( 2\cos \left( {{60}^{{}^\circ }} \right)-1 \right)\cos {{20}^{\circ }}+\dfrac{1}{4} \right)\]
\[\Rightarrow \dfrac{1}{4}\left( \left( 2\times \dfrac{1}{2}-1 \right)\cos {{20}^{\circ }}+\dfrac{1}{4} \right)\]
\[\Rightarrow \dfrac{1}{4}\left( \left( 1-1 \right)\cos {{20}^{\circ }}+\dfrac{1}{4} \right)\]
\[\Rightarrow \dfrac{1}{4}\left( \left( 0 \right)\cos {{20}^{\circ }}+\dfrac{1}{4} \right)\]
\[\Rightarrow \dfrac{1}{4}\left( 0+\dfrac{1}{4} \right)\]
\[\Rightarrow \dfrac{1}{16}\]
= R.H.S.
Hence, we have proved that \[\sin {{10}^{\circ }}\sin {{30}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }}=\dfrac{1}{16}\]
Note: The possible mistakes one can make in the question is that mistake in writing formulas which will mislead our solution. So, we will not be able to prove the desired result. Also, considering the wrong terms while applying formulas will make the question more complicated and lengthier.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

