
Prove the following expression: $\cot 4x\left( \sin 5x+\sin 3x \right)=\cot x\left( \sin 5x-\sin 3x \right)$.
Answer
613.8k+ views
Hint: To solve this question, we have to convert all the terms of any of the sides in terms of either sin or cos. We know that, $\sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$ . We also know that, $2\sin c\cos d=\sin \left( c+d \right)+\sin \left( c-d \right)$ and we also know that, $\sin \left( -\theta \right)=-\sin \theta $. By using these relations, we can prove the given expression.
Complete step-by-step answer:
In this question, we have been asked to prove that $\cot 4x\left( \sin 5x+\sin 3x \right)=\cot x\left( \sin 5x-\sin 3x \right)$. Let us consider the left hand side or LHS first, that is, $\cot 4x\left( \sin 5x+\sin 3x \right)$. Now we know that, $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$, so by substituting it in the LHS, we can write the LHS as, $\dfrac{\cos 4x}{\sin 4x}\left( \sin 5x+\sin 3x \right)$. We know that, $\sin a+\sin b=2\left[ \sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) \right]$. So, we get LHS as, $\begin{align}
& \dfrac{\cos 4x}{\sin 4x}\left[ 2\left[ \sin \left( \dfrac{5x+3x}{2} \right) \right]\left[ \cos \left( \dfrac{5x-3x}{2} \right) \right] \right] \\
& \Rightarrow \dfrac{\cos 4x}{\sin 4x}\left[ 2\left[ \sin \left( \dfrac{8x}{2} \right) \right]\left[ \cos \left( \dfrac{2x}{2} \right) \right] \right] \\
& \Rightarrow \dfrac{\cos 4x}{\sin 4x}\left[ 2\left( \sin 4x \right)\left( \cos x \right) \right] \\
\end{align}$
Cancelling the similar terms, we get LHS as,
$2\left( \cos 4x \right)\left( \cos x \right)$
Now, we will multiply the numerator and the denominator by $\sin x$, so we get LHS as, $\begin{align}
& 2\left( \cos 4x \right)\left( \cos x \right)\dfrac{\left( \sin x \right)}{\left( \sin x \right)} \\
& \Rightarrow 2\left( \cos 4x \right)\left( \sin x \right)\left( \dfrac{\cos x}{\sin x} \right) \\
\end{align}$
We also know that, $2\sin c\cos d=\sin \left( c+d \right)+\sin \left( c-d \right)$, so by substituting that we get the LHS as, $\left[ \sin \left( 4x+x \right)+\sin \left( x-4x \right) \right]\left[ \dfrac{\cos x}{\sin x} \right]$
On further simplification, we get,
$\begin{align}
& \left[ \sin 5x+\sin \left( -3x \right) \right]\cot x \\
& \Rightarrow \cot x\left[ \sin 5x+\sin \left( -3x \right) \right] \\
\end{align}$
We know that $\sin \left( -\theta \right)=-\sin \theta $, so, by substituting the same in the above expression, we get the LHS as, $\cot x\left( \sin 5x-\sin 3x \right)$, which is equal to the right hand side or RHS, which is also, $\cot x\left( \sin 5x-\sin 3x \right)$.
Hence, we have proved the expression given in the question, $\cot 4x\left( \sin 5x+\sin 3x \right)=\cot x\left( \sin 5x-\sin 3x \right)$.
Note: While solving this question, we have to keep in mind what we are trying to prove and then apply the respective formulas accordingly. For example, if we had not multiplied the numerator and the denominator by $\sin x$, then we would have gone in the wrong direction and made the answer longer.
Complete step-by-step answer:
In this question, we have been asked to prove that $\cot 4x\left( \sin 5x+\sin 3x \right)=\cot x\left( \sin 5x-\sin 3x \right)$. Let us consider the left hand side or LHS first, that is, $\cot 4x\left( \sin 5x+\sin 3x \right)$. Now we know that, $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$, so by substituting it in the LHS, we can write the LHS as, $\dfrac{\cos 4x}{\sin 4x}\left( \sin 5x+\sin 3x \right)$. We know that, $\sin a+\sin b=2\left[ \sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) \right]$. So, we get LHS as, $\begin{align}
& \dfrac{\cos 4x}{\sin 4x}\left[ 2\left[ \sin \left( \dfrac{5x+3x}{2} \right) \right]\left[ \cos \left( \dfrac{5x-3x}{2} \right) \right] \right] \\
& \Rightarrow \dfrac{\cos 4x}{\sin 4x}\left[ 2\left[ \sin \left( \dfrac{8x}{2} \right) \right]\left[ \cos \left( \dfrac{2x}{2} \right) \right] \right] \\
& \Rightarrow \dfrac{\cos 4x}{\sin 4x}\left[ 2\left( \sin 4x \right)\left( \cos x \right) \right] \\
\end{align}$
Cancelling the similar terms, we get LHS as,
$2\left( \cos 4x \right)\left( \cos x \right)$
Now, we will multiply the numerator and the denominator by $\sin x$, so we get LHS as, $\begin{align}
& 2\left( \cos 4x \right)\left( \cos x \right)\dfrac{\left( \sin x \right)}{\left( \sin x \right)} \\
& \Rightarrow 2\left( \cos 4x \right)\left( \sin x \right)\left( \dfrac{\cos x}{\sin x} \right) \\
\end{align}$
We also know that, $2\sin c\cos d=\sin \left( c+d \right)+\sin \left( c-d \right)$, so by substituting that we get the LHS as, $\left[ \sin \left( 4x+x \right)+\sin \left( x-4x \right) \right]\left[ \dfrac{\cos x}{\sin x} \right]$
On further simplification, we get,
$\begin{align}
& \left[ \sin 5x+\sin \left( -3x \right) \right]\cot x \\
& \Rightarrow \cot x\left[ \sin 5x+\sin \left( -3x \right) \right] \\
\end{align}$
We know that $\sin \left( -\theta \right)=-\sin \theta $, so, by substituting the same in the above expression, we get the LHS as, $\cot x\left( \sin 5x-\sin 3x \right)$, which is equal to the right hand side or RHS, which is also, $\cot x\left( \sin 5x-\sin 3x \right)$.
Hence, we have proved the expression given in the question, $\cot 4x\left( \sin 5x+\sin 3x \right)=\cot x\left( \sin 5x-\sin 3x \right)$.
Note: While solving this question, we have to keep in mind what we are trying to prove and then apply the respective formulas accordingly. For example, if we had not multiplied the numerator and the denominator by $\sin x$, then we would have gone in the wrong direction and made the answer longer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

