
Prove the following equation:
\[\left( {{\text{cosec }}A - \sin A} \right)\left( {{\text{sec }}A - \cos A} \right) = \dfrac{1}{{\tan A + \cot A}}\]
Answer
614.4k+ views
Hint: In order to prove this question, we will use the basic formulas of trigonometric function which will help us to convert sec, cosec, sin and cosine terms in the form of tan and cot. We will use the following formulas
${\text{cosec}}\theta = \dfrac{1}{{\sin \theta }},\sec \theta = \dfrac{1}{{\cos \theta }},{\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step-by-step answer:
Given equation is
\[\left( {{\text{cosec }}A - \sin A} \right)\left( {{\text{sec }}A - \cos A} \right) = \dfrac{1}{{\tan A + \cot A}}\]
Taking LHS
\[ = \left( {{\text{cosec }}A - \sin A} \right)\left( {{\text{sec }}A - \cos A} \right)\]
Using the formulas $\left[ {{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }},\sec \theta = \dfrac{1}{{\cos \theta }}} \right]$
$
= \left( {\dfrac{1}{{\sin A}} - \sin A} \right)\left( {\dfrac{1}{{\cos A}} - \cos A} \right) \\
= \dfrac{{1 - {{\sin }^2}A}}{{\sin A}}\left( {\dfrac{{1 - {{\cos }^2}A}}{{\cos A}}} \right) \\
$
Simplifying it further
\[
= \dfrac{{{{\cos }^2}A}}{{\sin A}}\left( {\dfrac{{{{\sin }^2}A}}{{\cos A}}} \right) \\
= \dfrac{{\cos A \times \sin A}}{1} \\
= \dfrac{{\cos A \times \sin A}}{{{{\cos }^2}A + {{\sin }^2}A}}{\text{ As we know that }}\left[ {{{\cos }^2}\theta + {{\sin }^2}\theta = 1} \right] \\
= \dfrac{1}{{\dfrac{{{{\cos }^2}A + {{\sin }^2}A}}{{\cos A \times \sin A}}}} \\
= \dfrac{1}{{\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\cos A}}}} \\
= \dfrac{1}{{\tan A + \cot A}} \\
\]
Hence LHS = RHS
Hence proved.
Note: In order to solve such problems related to trigonometric simplification and proof. Students must remember some basic trigonometric identities for a fast solution. Also any substitutions which are made should be done keeping in mind the RHS of the problem.
${\text{cosec}}\theta = \dfrac{1}{{\sin \theta }},\sec \theta = \dfrac{1}{{\cos \theta }},{\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step-by-step answer:
Given equation is
\[\left( {{\text{cosec }}A - \sin A} \right)\left( {{\text{sec }}A - \cos A} \right) = \dfrac{1}{{\tan A + \cot A}}\]
Taking LHS
\[ = \left( {{\text{cosec }}A - \sin A} \right)\left( {{\text{sec }}A - \cos A} \right)\]
Using the formulas $\left[ {{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }},\sec \theta = \dfrac{1}{{\cos \theta }}} \right]$
$
= \left( {\dfrac{1}{{\sin A}} - \sin A} \right)\left( {\dfrac{1}{{\cos A}} - \cos A} \right) \\
= \dfrac{{1 - {{\sin }^2}A}}{{\sin A}}\left( {\dfrac{{1 - {{\cos }^2}A}}{{\cos A}}} \right) \\
$
Simplifying it further
\[
= \dfrac{{{{\cos }^2}A}}{{\sin A}}\left( {\dfrac{{{{\sin }^2}A}}{{\cos A}}} \right) \\
= \dfrac{{\cos A \times \sin A}}{1} \\
= \dfrac{{\cos A \times \sin A}}{{{{\cos }^2}A + {{\sin }^2}A}}{\text{ As we know that }}\left[ {{{\cos }^2}\theta + {{\sin }^2}\theta = 1} \right] \\
= \dfrac{1}{{\dfrac{{{{\cos }^2}A + {{\sin }^2}A}}{{\cos A \times \sin A}}}} \\
= \dfrac{1}{{\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\cos A}}}} \\
= \dfrac{1}{{\tan A + \cot A}} \\
\]
Hence LHS = RHS
Hence proved.
Note: In order to solve such problems related to trigonometric simplification and proof. Students must remember some basic trigonometric identities for a fast solution. Also any substitutions which are made should be done keeping in mind the RHS of the problem.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

