
Prove the following equation:
\[\left( {{\text{cosec }}A - \sin A} \right)\left( {{\text{sec }}A - \cos A} \right) = \dfrac{1}{{\tan A + \cot A}}\]
Answer
599.7k+ views
Hint: In order to prove this question, we will use the basic formulas of trigonometric function which will help us to convert sec, cosec, sin and cosine terms in the form of tan and cot. We will use the following formulas
${\text{cosec}}\theta = \dfrac{1}{{\sin \theta }},\sec \theta = \dfrac{1}{{\cos \theta }},{\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step-by-step answer:
Given equation is
\[\left( {{\text{cosec }}A - \sin A} \right)\left( {{\text{sec }}A - \cos A} \right) = \dfrac{1}{{\tan A + \cot A}}\]
Taking LHS
\[ = \left( {{\text{cosec }}A - \sin A} \right)\left( {{\text{sec }}A - \cos A} \right)\]
Using the formulas $\left[ {{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }},\sec \theta = \dfrac{1}{{\cos \theta }}} \right]$
$
= \left( {\dfrac{1}{{\sin A}} - \sin A} \right)\left( {\dfrac{1}{{\cos A}} - \cos A} \right) \\
= \dfrac{{1 - {{\sin }^2}A}}{{\sin A}}\left( {\dfrac{{1 - {{\cos }^2}A}}{{\cos A}}} \right) \\
$
Simplifying it further
\[
= \dfrac{{{{\cos }^2}A}}{{\sin A}}\left( {\dfrac{{{{\sin }^2}A}}{{\cos A}}} \right) \\
= \dfrac{{\cos A \times \sin A}}{1} \\
= \dfrac{{\cos A \times \sin A}}{{{{\cos }^2}A + {{\sin }^2}A}}{\text{ As we know that }}\left[ {{{\cos }^2}\theta + {{\sin }^2}\theta = 1} \right] \\
= \dfrac{1}{{\dfrac{{{{\cos }^2}A + {{\sin }^2}A}}{{\cos A \times \sin A}}}} \\
= \dfrac{1}{{\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\cos A}}}} \\
= \dfrac{1}{{\tan A + \cot A}} \\
\]
Hence LHS = RHS
Hence proved.
Note: In order to solve such problems related to trigonometric simplification and proof. Students must remember some basic trigonometric identities for a fast solution. Also any substitutions which are made should be done keeping in mind the RHS of the problem.
${\text{cosec}}\theta = \dfrac{1}{{\sin \theta }},\sec \theta = \dfrac{1}{{\cos \theta }},{\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step-by-step answer:
Given equation is
\[\left( {{\text{cosec }}A - \sin A} \right)\left( {{\text{sec }}A - \cos A} \right) = \dfrac{1}{{\tan A + \cot A}}\]
Taking LHS
\[ = \left( {{\text{cosec }}A - \sin A} \right)\left( {{\text{sec }}A - \cos A} \right)\]
Using the formulas $\left[ {{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }},\sec \theta = \dfrac{1}{{\cos \theta }}} \right]$
$
= \left( {\dfrac{1}{{\sin A}} - \sin A} \right)\left( {\dfrac{1}{{\cos A}} - \cos A} \right) \\
= \dfrac{{1 - {{\sin }^2}A}}{{\sin A}}\left( {\dfrac{{1 - {{\cos }^2}A}}{{\cos A}}} \right) \\
$
Simplifying it further
\[
= \dfrac{{{{\cos }^2}A}}{{\sin A}}\left( {\dfrac{{{{\sin }^2}A}}{{\cos A}}} \right) \\
= \dfrac{{\cos A \times \sin A}}{1} \\
= \dfrac{{\cos A \times \sin A}}{{{{\cos }^2}A + {{\sin }^2}A}}{\text{ As we know that }}\left[ {{{\cos }^2}\theta + {{\sin }^2}\theta = 1} \right] \\
= \dfrac{1}{{\dfrac{{{{\cos }^2}A + {{\sin }^2}A}}{{\cos A \times \sin A}}}} \\
= \dfrac{1}{{\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\cos A}}}} \\
= \dfrac{1}{{\tan A + \cot A}} \\
\]
Hence LHS = RHS
Hence proved.
Note: In order to solve such problems related to trigonometric simplification and proof. Students must remember some basic trigonometric identities for a fast solution. Also any substitutions which are made should be done keeping in mind the RHS of the problem.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

