
Prove the following equation:
${\cos ^2}2x - {\cos ^2}6x = \sin 4x\sin 8x$
Answer
518.4k+ views
Hint- We will be using the following trigonometric identities as L.H.S. has the term ${\cos ^2}2x$.
We know $ \Rightarrow \cos 2x = 2{\cos ^2}x - 1$ …(1)
Replacing $x \to 2x$ in equation (1), then we get
$ \Rightarrow \cos 4x = 2{\cos ^2}2x - 1$
$ \Rightarrow {\cos ^2}2x = \dfrac{{\cos 4x + 1}}{2}$ …(2)
and replacing $x \to 6x$ in equation (1), then we get
$ \Rightarrow \cos 12x = 2{\cos ^2}6x - 1$
$ \Rightarrow {\cos ^2}6x = \dfrac{{\cos 12x + 1}}{2}$ ….(3)
Complete step-by-step answer:
According to question, we have
${\cos ^2}2x - {\cos ^2}6x = \sin 4x\sin 8x$ ….(4)
Considering LHS,
${\cos ^2}2x - {\cos ^2}6x $
Now replacing ${\cos ^2}2x$ and ${\cos ^2}6x$ from equation (2) and (3), we get
$ \Rightarrow \dfrac{{\cos 4x + 1}}{2} - \dfrac{{\cos 12x + 1}}{2}$
$ \Rightarrow \dfrac{1}{2}\cos 4x + \dfrac{1}{2} - \dfrac{1}{2}\cos 12x - \dfrac{1}{2}$
$ \Rightarrow \dfrac{1}{2}\left\{ {\cos 4x - \cos 12x} \right\}$
Now using formula $\cos A - \cos B = 2\sin \dfrac{{A + B}}{2}\sin \dfrac{{B - A}}{2}$ we get
$\dfrac{1}{2}\left\{ {2\sin \dfrac{{4x + 12x}}{2}\sin \dfrac{{12x - 4x}}{2}} \right\} \Rightarrow \sin \dfrac{{16x}}{2}\sin \dfrac{{8x}}{2}$
$ \Rightarrow \sin 4x\sin 8x$ = RHS
Hence, we proved that ${\cos ^2}2x - {\cos ^2}6x = \sin 4x\sin 8x$.
Note- We have to solve such questions based on proving by using trigonometric identities. Also, it can be proved from both sides, from LHS and from RHS both. Also, if it is not getting solved by simplifying one side, then in that case we will simplify both sides and try to prove the given expression.
We know $ \Rightarrow \cos 2x = 2{\cos ^2}x - 1$ …(1)
Replacing $x \to 2x$ in equation (1), then we get
$ \Rightarrow \cos 4x = 2{\cos ^2}2x - 1$
$ \Rightarrow {\cos ^2}2x = \dfrac{{\cos 4x + 1}}{2}$ …(2)
and replacing $x \to 6x$ in equation (1), then we get
$ \Rightarrow \cos 12x = 2{\cos ^2}6x - 1$
$ \Rightarrow {\cos ^2}6x = \dfrac{{\cos 12x + 1}}{2}$ ….(3)
Complete step-by-step answer:
According to question, we have
${\cos ^2}2x - {\cos ^2}6x = \sin 4x\sin 8x$ ….(4)
Considering LHS,
${\cos ^2}2x - {\cos ^2}6x $
Now replacing ${\cos ^2}2x$ and ${\cos ^2}6x$ from equation (2) and (3), we get
$ \Rightarrow \dfrac{{\cos 4x + 1}}{2} - \dfrac{{\cos 12x + 1}}{2}$
$ \Rightarrow \dfrac{1}{2}\cos 4x + \dfrac{1}{2} - \dfrac{1}{2}\cos 12x - \dfrac{1}{2}$
$ \Rightarrow \dfrac{1}{2}\left\{ {\cos 4x - \cos 12x} \right\}$
Now using formula $\cos A - \cos B = 2\sin \dfrac{{A + B}}{2}\sin \dfrac{{B - A}}{2}$ we get
$\dfrac{1}{2}\left\{ {2\sin \dfrac{{4x + 12x}}{2}\sin \dfrac{{12x - 4x}}{2}} \right\} \Rightarrow \sin \dfrac{{16x}}{2}\sin \dfrac{{8x}}{2}$
$ \Rightarrow \sin 4x\sin 8x$ = RHS
Hence, we proved that ${\cos ^2}2x - {\cos ^2}6x = \sin 4x\sin 8x$.
Note- We have to solve such questions based on proving by using trigonometric identities. Also, it can be proved from both sides, from LHS and from RHS both. Also, if it is not getting solved by simplifying one side, then in that case we will simplify both sides and try to prove the given expression.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
