
Prove the following:
$\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
Answer
509.1k+ views
Hint: Note that, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Use these formulas to simplify the left hand side and proceed.
On simplification we will get our desired result.
Complete step-by-step answer:
Given to prove that $\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$,
Left hand side is given by:
$ = \dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}}$
Using, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$, we get,
$ = \dfrac{{\dfrac{{\tan \dfrac{\pi }{4} + \tan x}}{{1 - \tan \dfrac{\pi }{4} \times \tan x}}}}{{\dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4} \times \tan x}}}}$
As, ${\text{tan}}\dfrac{\pi }{4}{\text{ = 1}}$, we get,
$ = \dfrac{{\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)}}{{\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)}}$
On simplification we get,
$ = \dfrac{{1 + \tan x}}{{1 - \tan x}} \times \dfrac{{1 + \tan x}}{{1 - \tan x}}$
As we can club the common terms, so we get,
$ = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
= Right hand side
Hence, $\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
(proved)
Note: Note the following important formulae,
1.$\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
2.$\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)$
3.$\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
4.$\cos A\cos B + \sin A\sin B = \cos \left( {A - B} \right)$
5.$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
6.$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Also, the trigonometric ratios of the standard angles are given by
Use these formulas to simplify the left hand side and proceed.
On simplification we will get our desired result.
Complete step-by-step answer:
Given to prove that $\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$,
Left hand side is given by:
$ = \dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}}$
Using, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$, we get,
$ = \dfrac{{\dfrac{{\tan \dfrac{\pi }{4} + \tan x}}{{1 - \tan \dfrac{\pi }{4} \times \tan x}}}}{{\dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4} \times \tan x}}}}$
As, ${\text{tan}}\dfrac{\pi }{4}{\text{ = 1}}$, we get,
$ = \dfrac{{\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)}}{{\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)}}$
On simplification we get,
$ = \dfrac{{1 + \tan x}}{{1 - \tan x}} \times \dfrac{{1 + \tan x}}{{1 - \tan x}}$
As we can club the common terms, so we get,
$ = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
= Right hand side
Hence, $\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
(proved)
Note: Note the following important formulae,
1.$\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
2.$\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)$
3.$\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
4.$\cos A\cos B + \sin A\sin B = \cos \left( {A - B} \right)$
5.$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
6.$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Also, the trigonometric ratios of the standard angles are given by
\[0^\circ \] | \[30^\circ \] | \[45^\circ \] | \[60^\circ \] | \[90^\circ \] | |
\[\operatorname{Sin} x\] | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 |
\[\operatorname{Cos} x\] | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
\[\operatorname{Tan} x\] | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Undefined |
\[Cotx\] | undefined | $\sqrt 3 $ | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 |
\[\cos ecx\] | undefined | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 |
\[\operatorname{Sec} x\] | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Undefined |
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
How many moles and how many grams of NaCl are present class 11 chemistry CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

Plants which grow in shade are called A Sciophytes class 11 biology CBSE

A renewable exhaustible natural resource is A Petroleum class 11 biology CBSE

In which of the following gametophytes is not independent class 11 biology CBSE

Find the molecular mass of Sulphuric Acid class 11 chemistry CBSE
