
Prove the following:
$\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
Answer
575.4k+ views
Hint: Note that, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Use these formulas to simplify the left hand side and proceed.
On simplification we will get our desired result.
Complete step-by-step answer:
Given to prove that $\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$,
Left hand side is given by:
$ = \dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}}$
Using, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$, we get,
$ = \dfrac{{\dfrac{{\tan \dfrac{\pi }{4} + \tan x}}{{1 - \tan \dfrac{\pi }{4} \times \tan x}}}}{{\dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4} \times \tan x}}}}$
As, ${\text{tan}}\dfrac{\pi }{4}{\text{ = 1}}$, we get,
$ = \dfrac{{\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)}}{{\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)}}$
On simplification we get,
$ = \dfrac{{1 + \tan x}}{{1 - \tan x}} \times \dfrac{{1 + \tan x}}{{1 - \tan x}}$
As we can club the common terms, so we get,
$ = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
= Right hand side
Hence, $\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
(proved)
Note: Note the following important formulae,
1.$\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
2.$\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)$
3.$\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
4.$\cos A\cos B + \sin A\sin B = \cos \left( {A - B} \right)$
5.$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
6.$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Also, the trigonometric ratios of the standard angles are given by
Use these formulas to simplify the left hand side and proceed.
On simplification we will get our desired result.
Complete step-by-step answer:
Given to prove that $\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$,
Left hand side is given by:
$ = \dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}}$
Using, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$, we get,
$ = \dfrac{{\dfrac{{\tan \dfrac{\pi }{4} + \tan x}}{{1 - \tan \dfrac{\pi }{4} \times \tan x}}}}{{\dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4} \times \tan x}}}}$
As, ${\text{tan}}\dfrac{\pi }{4}{\text{ = 1}}$, we get,
$ = \dfrac{{\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)}}{{\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)}}$
On simplification we get,
$ = \dfrac{{1 + \tan x}}{{1 - \tan x}} \times \dfrac{{1 + \tan x}}{{1 - \tan x}}$
As we can club the common terms, so we get,
$ = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
= Right hand side
Hence, $\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
(proved)
Note: Note the following important formulae,
1.$\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
2.$\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)$
3.$\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
4.$\cos A\cos B + \sin A\sin B = \cos \left( {A - B} \right)$
5.$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
6.$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Also, the trigonometric ratios of the standard angles are given by
| \[0^\circ \] | \[30^\circ \] | \[45^\circ \] | \[60^\circ \] | \[90^\circ \] | |
| \[\operatorname{Sin} x\] | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 |
| \[\operatorname{Cos} x\] | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
| \[\operatorname{Tan} x\] | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Undefined |
| \[Cotx\] | undefined | $\sqrt 3 $ | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 |
| \[\cos ecx\] | undefined | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 |
| \[\operatorname{Sec} x\] | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Undefined |
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

