
Prove the following:
$\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
Answer
590.1k+ views
Hint: Note that, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Use these formulas to simplify the left hand side and proceed.
On simplification we will get our desired result.
Complete step-by-step answer:
Given to prove that $\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$,
Left hand side is given by:
$ = \dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}}$
Using, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$, we get,
$ = \dfrac{{\dfrac{{\tan \dfrac{\pi }{4} + \tan x}}{{1 - \tan \dfrac{\pi }{4} \times \tan x}}}}{{\dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4} \times \tan x}}}}$
As, ${\text{tan}}\dfrac{\pi }{4}{\text{ = 1}}$, we get,
$ = \dfrac{{\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)}}{{\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)}}$
On simplification we get,
$ = \dfrac{{1 + \tan x}}{{1 - \tan x}} \times \dfrac{{1 + \tan x}}{{1 - \tan x}}$
As we can club the common terms, so we get,
$ = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
= Right hand side
Hence, $\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
(proved)
Note: Note the following important formulae,
1.$\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
2.$\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)$
3.$\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
4.$\cos A\cos B + \sin A\sin B = \cos \left( {A - B} \right)$
5.$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
6.$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Also, the trigonometric ratios of the standard angles are given by
Use these formulas to simplify the left hand side and proceed.
On simplification we will get our desired result.
Complete step-by-step answer:
Given to prove that $\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$,
Left hand side is given by:
$ = \dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}}$
Using, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$, we get,
$ = \dfrac{{\dfrac{{\tan \dfrac{\pi }{4} + \tan x}}{{1 - \tan \dfrac{\pi }{4} \times \tan x}}}}{{\dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4} \times \tan x}}}}$
As, ${\text{tan}}\dfrac{\pi }{4}{\text{ = 1}}$, we get,
$ = \dfrac{{\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)}}{{\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)}}$
On simplification we get,
$ = \dfrac{{1 + \tan x}}{{1 - \tan x}} \times \dfrac{{1 + \tan x}}{{1 - \tan x}}$
As we can club the common terms, so we get,
$ = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
= Right hand side
Hence, $\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
(proved)
Note: Note the following important formulae,
1.$\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
2.$\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)$
3.$\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
4.$\cos A\cos B + \sin A\sin B = \cos \left( {A - B} \right)$
5.$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
6.$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Also, the trigonometric ratios of the standard angles are given by
| \[0^\circ \] | \[30^\circ \] | \[45^\circ \] | \[60^\circ \] | \[90^\circ \] | |
| \[\operatorname{Sin} x\] | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 |
| \[\operatorname{Cos} x\] | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
| \[\operatorname{Tan} x\] | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Undefined |
| \[Cotx\] | undefined | $\sqrt 3 $ | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 |
| \[\cos ecx\] | undefined | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 |
| \[\operatorname{Sec} x\] | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Undefined |
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

