Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Prove the following:
$\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$

Answer
VerifiedVerified
509.1k+ views
Hint: Note that, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Use these formulas to simplify the left hand side and proceed.
On simplification we will get our desired result.

Complete step-by-step answer:
Given to prove that $\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$,
Left hand side is given by:
$ = \dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}}$
Using, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$, we get,
$ = \dfrac{{\dfrac{{\tan \dfrac{\pi }{4} + \tan x}}{{1 - \tan \dfrac{\pi }{4} \times \tan x}}}}{{\dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4} \times \tan x}}}}$
As, ${\text{tan}}\dfrac{\pi }{4}{\text{ = 1}}$, we get,
$ = \dfrac{{\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)}}{{\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)}}$
On simplification we get,
$ = \dfrac{{1 + \tan x}}{{1 - \tan x}} \times \dfrac{{1 + \tan x}}{{1 - \tan x}}$
As we can club the common terms, so we get,
$ = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
= Right hand side
Hence, $\dfrac{{\tan \left( {\dfrac{\pi }{4} + x} \right)}}{{\tan \left( {\dfrac{\pi }{4} - x} \right)}} = {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^2}$
(proved)


Note: Note the following important formulae,
1.$\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
2.$\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)$
3.$\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
4.$\cos A\cos B + \sin A\sin B = \cos \left( {A - B} \right)$
5.$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
6.$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Also, the trigonometric ratios of the standard angles are given by

\[0^\circ \]\[30^\circ \]\[45^\circ \]\[60^\circ \]\[90^\circ \]
\[\operatorname{Sin} x\]0$\dfrac{1}{2}$ $\dfrac{1}{{\sqrt 2 }}$ $\dfrac{{\sqrt 3 }}{2}$ 1
\[\operatorname{Cos} x\]1$\dfrac{{\sqrt 3 }}{2}$$\dfrac{1}{{\sqrt 2 }}$$\dfrac{1}{2}$0
\[\operatorname{Tan} x\]0$\dfrac{1}{{\sqrt 3 }}$ 1$\sqrt 3 $Undefined
\[Cotx\]undefined$\sqrt 3 $1$\dfrac{1}{{\sqrt 3 }}$0
\[\cos ecx\]undefined2$\sqrt 2 $$\dfrac{2}{{\sqrt 3 }}$1
\[\operatorname{Sec} x\]1$\dfrac{2}{{\sqrt 3 }}$$\sqrt 2 $2Undefined