
Prove the following: $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $.
Answer
519.3k+ views
Hint: To solve this question, we can convert every term of the left hand side or the LHS in sin and cos. We also know a few relations like, $\sin a\cos b+\cos a\sin b=\sin \left( a+b \right)$ and, $\sin a\cos b-\cos a\sin b=\sin \left( a-b \right)$. By using these relations, we can prove the required expression.
Complete step-by-step answer:
In this question, we have been asked to prove the expression, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $. To prove this expression, we will first consider the left hand side or the LHS, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }$. We know that $\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$. So, we can substitute it in the LHS and then we can write LHS as, $=\dfrac{\dfrac{\sin 5\theta }{\cos 5\theta }+\dfrac{\sin 3\theta }{\cos 3\theta }}{\dfrac{\sin 5\theta }{\cos 5\theta }-\dfrac{\sin 3\theta }{\cos 3\theta }}$
Now, we will take the LCM in both the numerator and denominator. By doing that we get LHS as, $\begin{align}
& =\dfrac{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}}{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}} \\
& \Rightarrow \dfrac{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]}{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]} \\
\end{align}$
We know that $\sin a\cos b+\cos a\sin b=\sin \left( a+b \right)$ and, $\sin a\cos b-\cos a\sin b=\sin \left( a-b \right)$. By applying that here in the above expression, we get the LHS as,
$\begin{align}
& =\dfrac{\sin \left( 5\theta +3\theta \right)}{\sin \left( 5\theta -3\theta \right)} \\
& =\dfrac{\sin 8\theta }{\sin 2\theta } \\
\end{align}$
We know that $\sin 2\alpha =2\sin \alpha \cos \alpha $. By applying that in the above expression, we get LHS as,
$\begin{align}
& =\dfrac{2\sin 4\theta \cos 4\theta }{2\sin \theta \cos \theta } \\
& =\dfrac{\sin 4\theta \cos 4\theta }{\sin \theta \cos \theta } \\
\end{align}$
We will again apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $=\dfrac{2\sin 2\theta \cos 2\theta \cos 4\theta }{\sin \theta \cos \theta }$
Once again, we will apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $\begin{align}
& =\dfrac{2\left( 2\sin \cos \theta \right)\cos 2\theta \cos 4\theta }{\sin \theta \cos \theta } \\
& =4\cos 2\theta \cos 4\theta \\
\end{align}$
Which is equal to the right hand side or the RHS of the expression given in the question. Hence, we have proved the expression given in the question, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $.
Note: To solve this question we should know the relation, $\sin 2\alpha =2\sin \alpha \cos \alpha $, which is derived from using $\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y$, where $x=y=\alpha $. While solving this question, the students can make a mistake with the trigonometric functions, so the students must know the basic trigonometric functions and relations.
Complete step-by-step answer:
In this question, we have been asked to prove the expression, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $. To prove this expression, we will first consider the left hand side or the LHS, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }$. We know that $\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$. So, we can substitute it in the LHS and then we can write LHS as, $=\dfrac{\dfrac{\sin 5\theta }{\cos 5\theta }+\dfrac{\sin 3\theta }{\cos 3\theta }}{\dfrac{\sin 5\theta }{\cos 5\theta }-\dfrac{\sin 3\theta }{\cos 3\theta }}$
Now, we will take the LCM in both the numerator and denominator. By doing that we get LHS as, $\begin{align}
& =\dfrac{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}}{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}} \\
& \Rightarrow \dfrac{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]}{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]} \\
\end{align}$
We know that $\sin a\cos b+\cos a\sin b=\sin \left( a+b \right)$ and, $\sin a\cos b-\cos a\sin b=\sin \left( a-b \right)$. By applying that here in the above expression, we get the LHS as,
$\begin{align}
& =\dfrac{\sin \left( 5\theta +3\theta \right)}{\sin \left( 5\theta -3\theta \right)} \\
& =\dfrac{\sin 8\theta }{\sin 2\theta } \\
\end{align}$
We know that $\sin 2\alpha =2\sin \alpha \cos \alpha $. By applying that in the above expression, we get LHS as,
$\begin{align}
& =\dfrac{2\sin 4\theta \cos 4\theta }{2\sin \theta \cos \theta } \\
& =\dfrac{\sin 4\theta \cos 4\theta }{\sin \theta \cos \theta } \\
\end{align}$
We will again apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $=\dfrac{2\sin 2\theta \cos 2\theta \cos 4\theta }{\sin \theta \cos \theta }$
Once again, we will apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $\begin{align}
& =\dfrac{2\left( 2\sin \cos \theta \right)\cos 2\theta \cos 4\theta }{\sin \theta \cos \theta } \\
& =4\cos 2\theta \cos 4\theta \\
\end{align}$
Which is equal to the right hand side or the RHS of the expression given in the question. Hence, we have proved the expression given in the question, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $.
Note: To solve this question we should know the relation, $\sin 2\alpha =2\sin \alpha \cos \alpha $, which is derived from using $\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y$, where $x=y=\alpha $. While solving this question, the students can make a mistake with the trigonometric functions, so the students must know the basic trigonometric functions and relations.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE

Statistics in singular sense includes A Collection class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
