
Prove the following: $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $.
Answer
600.3k+ views
Hint: To solve this question, we can convert every term of the left hand side or the LHS in sin and cos. We also know a few relations like, $\sin a\cos b+\cos a\sin b=\sin \left( a+b \right)$ and, $\sin a\cos b-\cos a\sin b=\sin \left( a-b \right)$. By using these relations, we can prove the required expression.
Complete step-by-step answer:
In this question, we have been asked to prove the expression, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $. To prove this expression, we will first consider the left hand side or the LHS, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }$. We know that $\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$. So, we can substitute it in the LHS and then we can write LHS as, $=\dfrac{\dfrac{\sin 5\theta }{\cos 5\theta }+\dfrac{\sin 3\theta }{\cos 3\theta }}{\dfrac{\sin 5\theta }{\cos 5\theta }-\dfrac{\sin 3\theta }{\cos 3\theta }}$
Now, we will take the LCM in both the numerator and denominator. By doing that we get LHS as, $\begin{align}
& =\dfrac{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}}{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}} \\
& \Rightarrow \dfrac{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]}{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]} \\
\end{align}$
We know that $\sin a\cos b+\cos a\sin b=\sin \left( a+b \right)$ and, $\sin a\cos b-\cos a\sin b=\sin \left( a-b \right)$. By applying that here in the above expression, we get the LHS as,
$\begin{align}
& =\dfrac{\sin \left( 5\theta +3\theta \right)}{\sin \left( 5\theta -3\theta \right)} \\
& =\dfrac{\sin 8\theta }{\sin 2\theta } \\
\end{align}$
We know that $\sin 2\alpha =2\sin \alpha \cos \alpha $. By applying that in the above expression, we get LHS as,
$\begin{align}
& =\dfrac{2\sin 4\theta \cos 4\theta }{2\sin \theta \cos \theta } \\
& =\dfrac{\sin 4\theta \cos 4\theta }{\sin \theta \cos \theta } \\
\end{align}$
We will again apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $=\dfrac{2\sin 2\theta \cos 2\theta \cos 4\theta }{\sin \theta \cos \theta }$
Once again, we will apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $\begin{align}
& =\dfrac{2\left( 2\sin \cos \theta \right)\cos 2\theta \cos 4\theta }{\sin \theta \cos \theta } \\
& =4\cos 2\theta \cos 4\theta \\
\end{align}$
Which is equal to the right hand side or the RHS of the expression given in the question. Hence, we have proved the expression given in the question, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $.
Note: To solve this question we should know the relation, $\sin 2\alpha =2\sin \alpha \cos \alpha $, which is derived from using $\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y$, where $x=y=\alpha $. While solving this question, the students can make a mistake with the trigonometric functions, so the students must know the basic trigonometric functions and relations.
Complete step-by-step answer:
In this question, we have been asked to prove the expression, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $. To prove this expression, we will first consider the left hand side or the LHS, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }$. We know that $\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$. So, we can substitute it in the LHS and then we can write LHS as, $=\dfrac{\dfrac{\sin 5\theta }{\cos 5\theta }+\dfrac{\sin 3\theta }{\cos 3\theta }}{\dfrac{\sin 5\theta }{\cos 5\theta }-\dfrac{\sin 3\theta }{\cos 3\theta }}$
Now, we will take the LCM in both the numerator and denominator. By doing that we get LHS as, $\begin{align}
& =\dfrac{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}}{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}} \\
& \Rightarrow \dfrac{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]}{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]} \\
\end{align}$
We know that $\sin a\cos b+\cos a\sin b=\sin \left( a+b \right)$ and, $\sin a\cos b-\cos a\sin b=\sin \left( a-b \right)$. By applying that here in the above expression, we get the LHS as,
$\begin{align}
& =\dfrac{\sin \left( 5\theta +3\theta \right)}{\sin \left( 5\theta -3\theta \right)} \\
& =\dfrac{\sin 8\theta }{\sin 2\theta } \\
\end{align}$
We know that $\sin 2\alpha =2\sin \alpha \cos \alpha $. By applying that in the above expression, we get LHS as,
$\begin{align}
& =\dfrac{2\sin 4\theta \cos 4\theta }{2\sin \theta \cos \theta } \\
& =\dfrac{\sin 4\theta \cos 4\theta }{\sin \theta \cos \theta } \\
\end{align}$
We will again apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $=\dfrac{2\sin 2\theta \cos 2\theta \cos 4\theta }{\sin \theta \cos \theta }$
Once again, we will apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $\begin{align}
& =\dfrac{2\left( 2\sin \cos \theta \right)\cos 2\theta \cos 4\theta }{\sin \theta \cos \theta } \\
& =4\cos 2\theta \cos 4\theta \\
\end{align}$
Which is equal to the right hand side or the RHS of the expression given in the question. Hence, we have proved the expression given in the question, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $.
Note: To solve this question we should know the relation, $\sin 2\alpha =2\sin \alpha \cos \alpha $, which is derived from using $\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y$, where $x=y=\alpha $. While solving this question, the students can make a mistake with the trigonometric functions, so the students must know the basic trigonometric functions and relations.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

