
Prove the following: $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $.
Answer
601.2k+ views
Hint: To solve this question, we can convert every term of the left hand side or the LHS in sin and cos. We also know a few relations like, $\sin a\cos b+\cos a\sin b=\sin \left( a+b \right)$ and, $\sin a\cos b-\cos a\sin b=\sin \left( a-b \right)$. By using these relations, we can prove the required expression.
Complete step-by-step answer:
In this question, we have been asked to prove the expression, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $. To prove this expression, we will first consider the left hand side or the LHS, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }$. We know that $\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$. So, we can substitute it in the LHS and then we can write LHS as, $=\dfrac{\dfrac{\sin 5\theta }{\cos 5\theta }+\dfrac{\sin 3\theta }{\cos 3\theta }}{\dfrac{\sin 5\theta }{\cos 5\theta }-\dfrac{\sin 3\theta }{\cos 3\theta }}$
Now, we will take the LCM in both the numerator and denominator. By doing that we get LHS as, $\begin{align}
& =\dfrac{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}}{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}} \\
& \Rightarrow \dfrac{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]}{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]} \\
\end{align}$
We know that $\sin a\cos b+\cos a\sin b=\sin \left( a+b \right)$ and, $\sin a\cos b-\cos a\sin b=\sin \left( a-b \right)$. By applying that here in the above expression, we get the LHS as,
$\begin{align}
& =\dfrac{\sin \left( 5\theta +3\theta \right)}{\sin \left( 5\theta -3\theta \right)} \\
& =\dfrac{\sin 8\theta }{\sin 2\theta } \\
\end{align}$
We know that $\sin 2\alpha =2\sin \alpha \cos \alpha $. By applying that in the above expression, we get LHS as,
$\begin{align}
& =\dfrac{2\sin 4\theta \cos 4\theta }{2\sin \theta \cos \theta } \\
& =\dfrac{\sin 4\theta \cos 4\theta }{\sin \theta \cos \theta } \\
\end{align}$
We will again apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $=\dfrac{2\sin 2\theta \cos 2\theta \cos 4\theta }{\sin \theta \cos \theta }$
Once again, we will apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $\begin{align}
& =\dfrac{2\left( 2\sin \cos \theta \right)\cos 2\theta \cos 4\theta }{\sin \theta \cos \theta } \\
& =4\cos 2\theta \cos 4\theta \\
\end{align}$
Which is equal to the right hand side or the RHS of the expression given in the question. Hence, we have proved the expression given in the question, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $.
Note: To solve this question we should know the relation, $\sin 2\alpha =2\sin \alpha \cos \alpha $, which is derived from using $\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y$, where $x=y=\alpha $. While solving this question, the students can make a mistake with the trigonometric functions, so the students must know the basic trigonometric functions and relations.
Complete step-by-step answer:
In this question, we have been asked to prove the expression, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $. To prove this expression, we will first consider the left hand side or the LHS, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }$. We know that $\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$. So, we can substitute it in the LHS and then we can write LHS as, $=\dfrac{\dfrac{\sin 5\theta }{\cos 5\theta }+\dfrac{\sin 3\theta }{\cos 3\theta }}{\dfrac{\sin 5\theta }{\cos 5\theta }-\dfrac{\sin 3\theta }{\cos 3\theta }}$
Now, we will take the LCM in both the numerator and denominator. By doing that we get LHS as, $\begin{align}
& =\dfrac{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}}{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}} \\
& \Rightarrow \dfrac{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]}{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]} \\
\end{align}$
We know that $\sin a\cos b+\cos a\sin b=\sin \left( a+b \right)$ and, $\sin a\cos b-\cos a\sin b=\sin \left( a-b \right)$. By applying that here in the above expression, we get the LHS as,
$\begin{align}
& =\dfrac{\sin \left( 5\theta +3\theta \right)}{\sin \left( 5\theta -3\theta \right)} \\
& =\dfrac{\sin 8\theta }{\sin 2\theta } \\
\end{align}$
We know that $\sin 2\alpha =2\sin \alpha \cos \alpha $. By applying that in the above expression, we get LHS as,
$\begin{align}
& =\dfrac{2\sin 4\theta \cos 4\theta }{2\sin \theta \cos \theta } \\
& =\dfrac{\sin 4\theta \cos 4\theta }{\sin \theta \cos \theta } \\
\end{align}$
We will again apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $=\dfrac{2\sin 2\theta \cos 2\theta \cos 4\theta }{\sin \theta \cos \theta }$
Once again, we will apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $\begin{align}
& =\dfrac{2\left( 2\sin \cos \theta \right)\cos 2\theta \cos 4\theta }{\sin \theta \cos \theta } \\
& =4\cos 2\theta \cos 4\theta \\
\end{align}$
Which is equal to the right hand side or the RHS of the expression given in the question. Hence, we have proved the expression given in the question, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $.
Note: To solve this question we should know the relation, $\sin 2\alpha =2\sin \alpha \cos \alpha $, which is derived from using $\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y$, where $x=y=\alpha $. While solving this question, the students can make a mistake with the trigonometric functions, so the students must know the basic trigonometric functions and relations.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

