
Prove the following:
\[\dfrac{\cos \left( {{90}^{o}}-\theta \right)\sec \left( {{90}^{o}}-\theta \right)\tan \theta }{\operatorname{cosec}\left( {{90}^{o}}-\theta \right)\sin \left( {{90}^{o}}-\theta \right)\cot \left( {{90}^{o}}-\theta \right)}+\dfrac{\tan \left( {{90}^{o}}-\theta \right)}{\cot \theta }=2\]
Answer
618.6k+ views
Hint: First of all, take the LHS of the given question and use sin A.cosec A = 1 and cos A.sec A = 1 to simplify the given expression. To further simplify it, use \[\cot \left( {{90}^{o}}-A \right)=\tan A\] and \[\tan \left( {{90}^{o}}-A \right)=\cot A\]. Finally, cancel the like terms to get the desired answer.
Complete step-by-step answer:
Here, we have to prove that
\[\dfrac{\cos \left( {{90}^{o}}-\theta \right)\sec \left( {{90}^{o}}-\theta \right)\tan \theta }{\operatorname{cosec}\left( {{90}^{o}}-\theta \right)\sin \left( {{90}^{o}}-\theta \right)\cot \left( {{90}^{o}}-\theta \right)}+\dfrac{\tan \left( {{90}^{o}}-\theta \right)}{\cot \theta }=2\]
Let us consider the left-hand side (LHS) of the equation given in the question as
\[L=\dfrac{\cos \left( {{90}^{o}}-\theta \right)\sec \left( {{90}^{o}}-\theta \right)\tan \theta }{\operatorname{cosec}\left( {{90}^{o}}-\theta \right)\sin \left( {{90}^{o}}-\theta \right)\cot \left( {{90}^{o}}-\theta \right)}+\dfrac{\tan \left( {{90}^{o}}-\theta \right)}{\cot \theta }\]
We know that cos A.sec A = 1. By substituting \[A={{90}^{o}}-\theta \], we get, \[\cos \left( {{90}^{o}}-\theta \right).\sec \left( {{90}^{o}}-\theta \right)=1\]. Using this in the above expression, we get,
\[L=\dfrac{1.\tan \theta }{\operatorname{cosec}\left( {{90}^{o}}-\theta \right)\sin \left( {{90}^{o}}-\theta \right)\cot \left( {{90}^{o}}-\theta \right)}+\dfrac{\tan \left( {{90}^{o}}-\theta \right)}{\cot \theta }\]
Now, we also know that cosec A.sin A = 1. By substituting \[A={{90}^{o}}-\theta \], we get, \[\operatorname{cosec}\left( {{90}^{o}}-\theta \right).\sin \left( {{90}^{o}}-\theta \right)=1\]. Using this in the above expression, we get,
\[L=\dfrac{1.\tan \theta }{1.\cot \left( {{90}^{o}}-\theta \right)}+\dfrac{\tan \left( {{90}^{o}}-\theta \right)}{\cot \theta }\]
We know that \[\cot \left( {{90}^{o}}-\theta \right)=\tan A\]. By using this in the above expression, we get,
\[L=\dfrac{\tan \theta }{\tan \theta }+\dfrac{\tan \left( {{90}^{o}}-\theta \right)}{\cot \theta }\]
Also, we know that \[\tan \left( {{90}^{o}}-\theta \right)=\cot A\]. By using this in the above expression, we get,
\[L=\dfrac{\tan \theta }{\tan \theta }+\dfrac{\cot \theta }{\cot \theta }\]
By canceling the like terms in the above expression, we get L = 1 + 1 = 2 which is equal to RHS of the equation given in the question.
So, we get LHS. RHS. Hence proved.
Therefore, we have proved that, \[\dfrac{\cos \left( {{90}^{o}}-\theta \right)\sec \left( {{90}^{o}}-\theta \right)\tan \theta }{\operatorname{cosec}\left( {{90}^{o}}-\theta \right)\sin \left( {{90}^{o}}-\theta \right)\cot \left( {{90}^{o}}-\theta \right)}+\dfrac{\tan \left( {{90}^{o}}-\theta \right)}{\cot \theta }=2\]
Note: Students should remember the general formulas like
\[\begin{align}
& \sin \left( {{90}^{o}}-\theta \right)=\cos \theta ,\text{ cos}\left( {{90}^{o}}-\theta \right)=\sin \theta ,\text{ } \\
& \sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta ,\text{ cosec}\left( {{90}^{o}}-\theta \right)=\sec \theta , \\
& \tan \left( {{90}^{o}}-\theta \right)=\cot \theta \text{ and cot}\left( {{90}^{o}}-\theta \right)=\tan \theta \\
\end{align}\]
Also, some students often get confused if \[\sin \left( {{90}^{o}}-\theta \right).\text{cosec}\left( {{90}^{o}}-\theta \right)\] and \[\sec \left( {{90}^{o}}-\theta \right).\text{cos}\left( {{90}^{o}}-\theta \right)\] are equal to 1 or not. So they must note that sin A.cosec A and sec B.cos B are also equal to 1 whatever is the value of angle A and B.
Complete step-by-step answer:
Here, we have to prove that
\[\dfrac{\cos \left( {{90}^{o}}-\theta \right)\sec \left( {{90}^{o}}-\theta \right)\tan \theta }{\operatorname{cosec}\left( {{90}^{o}}-\theta \right)\sin \left( {{90}^{o}}-\theta \right)\cot \left( {{90}^{o}}-\theta \right)}+\dfrac{\tan \left( {{90}^{o}}-\theta \right)}{\cot \theta }=2\]
Let us consider the left-hand side (LHS) of the equation given in the question as
\[L=\dfrac{\cos \left( {{90}^{o}}-\theta \right)\sec \left( {{90}^{o}}-\theta \right)\tan \theta }{\operatorname{cosec}\left( {{90}^{o}}-\theta \right)\sin \left( {{90}^{o}}-\theta \right)\cot \left( {{90}^{o}}-\theta \right)}+\dfrac{\tan \left( {{90}^{o}}-\theta \right)}{\cot \theta }\]
We know that cos A.sec A = 1. By substituting \[A={{90}^{o}}-\theta \], we get, \[\cos \left( {{90}^{o}}-\theta \right).\sec \left( {{90}^{o}}-\theta \right)=1\]. Using this in the above expression, we get,
\[L=\dfrac{1.\tan \theta }{\operatorname{cosec}\left( {{90}^{o}}-\theta \right)\sin \left( {{90}^{o}}-\theta \right)\cot \left( {{90}^{o}}-\theta \right)}+\dfrac{\tan \left( {{90}^{o}}-\theta \right)}{\cot \theta }\]
Now, we also know that cosec A.sin A = 1. By substituting \[A={{90}^{o}}-\theta \], we get, \[\operatorname{cosec}\left( {{90}^{o}}-\theta \right).\sin \left( {{90}^{o}}-\theta \right)=1\]. Using this in the above expression, we get,
\[L=\dfrac{1.\tan \theta }{1.\cot \left( {{90}^{o}}-\theta \right)}+\dfrac{\tan \left( {{90}^{o}}-\theta \right)}{\cot \theta }\]
We know that \[\cot \left( {{90}^{o}}-\theta \right)=\tan A\]. By using this in the above expression, we get,
\[L=\dfrac{\tan \theta }{\tan \theta }+\dfrac{\tan \left( {{90}^{o}}-\theta \right)}{\cot \theta }\]
Also, we know that \[\tan \left( {{90}^{o}}-\theta \right)=\cot A\]. By using this in the above expression, we get,
\[L=\dfrac{\tan \theta }{\tan \theta }+\dfrac{\cot \theta }{\cot \theta }\]
By canceling the like terms in the above expression, we get L = 1 + 1 = 2 which is equal to RHS of the equation given in the question.
So, we get LHS. RHS. Hence proved.
Therefore, we have proved that, \[\dfrac{\cos \left( {{90}^{o}}-\theta \right)\sec \left( {{90}^{o}}-\theta \right)\tan \theta }{\operatorname{cosec}\left( {{90}^{o}}-\theta \right)\sin \left( {{90}^{o}}-\theta \right)\cot \left( {{90}^{o}}-\theta \right)}+\dfrac{\tan \left( {{90}^{o}}-\theta \right)}{\cot \theta }=2\]
Note: Students should remember the general formulas like
\[\begin{align}
& \sin \left( {{90}^{o}}-\theta \right)=\cos \theta ,\text{ cos}\left( {{90}^{o}}-\theta \right)=\sin \theta ,\text{ } \\
& \sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta ,\text{ cosec}\left( {{90}^{o}}-\theta \right)=\sec \theta , \\
& \tan \left( {{90}^{o}}-\theta \right)=\cot \theta \text{ and cot}\left( {{90}^{o}}-\theta \right)=\tan \theta \\
\end{align}\]
Also, some students often get confused if \[\sin \left( {{90}^{o}}-\theta \right).\text{cosec}\left( {{90}^{o}}-\theta \right)\] and \[\sec \left( {{90}^{o}}-\theta \right).\text{cos}\left( {{90}^{o}}-\theta \right)\] are equal to 1 or not. So they must note that sin A.cosec A and sec B.cos B are also equal to 1 whatever is the value of angle A and B.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

