
Prove the following:
$\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right) = \sin \left( {x + y} \right)$
Answer
590.7k+ views
Hint: Note that, $\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
Again, $\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $
Therefore take the left hand side and use these two formulae to proceed.
And on solving we will arrive at our desired result.
Complete step-by-step answer:
Given to prove $\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right) = \sin \left( {x + y} \right)$,
We know that, $\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
Now, left hand side is given by,
$ = \cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right)$
Using, $\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$, we get,
$ = \cos \left( {\dfrac{\pi }{4} - x + \dfrac{\pi }{4} - y} \right)$
On simplification we get,
$ = \cos \left( {\dfrac{\pi }{2} - \left( {x + y} \right)} \right)$
Using, $\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $, we get,
$ = \sin \left( {x + y} \right)$
= Right hand side
Therefore, $\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right) = \sin \left( {x + y} \right)$ (proved).
Note: Note the following important formulae:
1.$\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x{\text{ , tan}}\left( {\dfrac{\pi }{2} - x} \right) = 2.\cot x{\text{ , cosec}}\left( {\dfrac{\pi }{2} - x} \right) = \sec x$
3.$\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
4.$\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)$
5.$\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
6.$\cos A\cos B + \sin A\sin B = \cos \left( {A - B} \right)$
7.$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
8.$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Again, $\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $
Therefore take the left hand side and use these two formulae to proceed.
And on solving we will arrive at our desired result.
Complete step-by-step answer:
Given to prove $\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right) = \sin \left( {x + y} \right)$,
We know that, $\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
Now, left hand side is given by,
$ = \cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right)$
Using, $\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$, we get,
$ = \cos \left( {\dfrac{\pi }{4} - x + \dfrac{\pi }{4} - y} \right)$
On simplification we get,
$ = \cos \left( {\dfrac{\pi }{2} - \left( {x + y} \right)} \right)$
Using, $\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $, we get,
$ = \sin \left( {x + y} \right)$
= Right hand side
Therefore, $\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right) = \sin \left( {x + y} \right)$ (proved).
Note: Note the following important formulae:
1.$\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x{\text{ , tan}}\left( {\dfrac{\pi }{2} - x} \right) = 2.\cot x{\text{ , cosec}}\left( {\dfrac{\pi }{2} - x} \right) = \sec x$
3.$\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
4.$\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)$
5.$\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
6.$\cos A\cos B + \sin A\sin B = \cos \left( {A - B} \right)$
7.$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
8.$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

