
Prove the following:
$\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right) = \sin \left( {x + y} \right)$
Answer
576k+ views
Hint: Note that, $\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
Again, $\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $
Therefore take the left hand side and use these two formulae to proceed.
And on solving we will arrive at our desired result.
Complete step-by-step answer:
Given to prove $\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right) = \sin \left( {x + y} \right)$,
We know that, $\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
Now, left hand side is given by,
$ = \cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right)$
Using, $\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$, we get,
$ = \cos \left( {\dfrac{\pi }{4} - x + \dfrac{\pi }{4} - y} \right)$
On simplification we get,
$ = \cos \left( {\dfrac{\pi }{2} - \left( {x + y} \right)} \right)$
Using, $\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $, we get,
$ = \sin \left( {x + y} \right)$
= Right hand side
Therefore, $\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right) = \sin \left( {x + y} \right)$ (proved).
Note: Note the following important formulae:
1.$\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x{\text{ , tan}}\left( {\dfrac{\pi }{2} - x} \right) = 2.\cot x{\text{ , cosec}}\left( {\dfrac{\pi }{2} - x} \right) = \sec x$
3.$\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
4.$\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)$
5.$\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
6.$\cos A\cos B + \sin A\sin B = \cos \left( {A - B} \right)$
7.$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
8.$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Again, $\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $
Therefore take the left hand side and use these two formulae to proceed.
And on solving we will arrive at our desired result.
Complete step-by-step answer:
Given to prove $\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right) = \sin \left( {x + y} \right)$,
We know that, $\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
Now, left hand side is given by,
$ = \cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right)$
Using, $\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$, we get,
$ = \cos \left( {\dfrac{\pi }{4} - x + \dfrac{\pi }{4} - y} \right)$
On simplification we get,
$ = \cos \left( {\dfrac{\pi }{2} - \left( {x + y} \right)} \right)$
Using, $\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $, we get,
$ = \sin \left( {x + y} \right)$
= Right hand side
Therefore, $\cos \left( {\dfrac{\pi }{4} - x} \right)\cos \left( {\dfrac{\pi }{4} - y} \right) - \sin \left( {\dfrac{\pi }{4} - x} \right)\sin \left( {\dfrac{\pi }{4} - y} \right) = \sin \left( {x + y} \right)$ (proved).
Note: Note the following important formulae:
1.$\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x{\text{ , tan}}\left( {\dfrac{\pi }{2} - x} \right) = 2.\cot x{\text{ , cosec}}\left( {\dfrac{\pi }{2} - x} \right) = \sec x$
3.$\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
4.$\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)$
5.$\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right)$
6.$\cos A\cos B + \sin A\sin B = \cos \left( {A - B} \right)$
7.$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
8.$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

