
Prove the following:
$\cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right) = - \sqrt 2 \sin x$
Answer
510.6k+ views
Hint: We can expand the LHS of the given equation using the trigonometric identities $\cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)$and $\cos \left( {A + B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)$. On simplification and further calculations, we will obtain the RHS of the equation. We can say the equation is true when $LHS = RHS$
Complete step-by-step answer:
We need to prove that $\cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right) = - \sqrt 2 \sin x$
Let us look at the LHS.
$LHS = \cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right)$
It is of the form $\cos \left( {A + B} \right) - \cos \left( {A - B} \right)$ .
We know that $\cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)$and $\cos \left( {A + B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)$
$ \Rightarrow \cos \left( {A + B} \right) - \cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right) - \left( {\cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)} \right)$
On further simplification, we get,
$ \Rightarrow \cos \left( {A + B} \right) - \cos \left( {A - B} \right) = - 2\sin \left( A \right)\sin \left( B \right)$
We can substitute the values,
\[ \Rightarrow \cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right) = - 2\sin \left( {\dfrac{{3\pi }}{4}} \right)\sin x\]
Then the LHS will become,
\[ \Rightarrow LHS = - 2\sin \left( {\dfrac{{3\pi }}{4}} \right)\sin x\]
We know that $\sin \dfrac{{3\pi }}{4} = \dfrac{1}{{\sqrt 2 }}$. On substituting, we get,
\[ \Rightarrow LHS = - 2\left( {\dfrac{1}{{\sqrt 2 }}} \right)\sin x\]
On simplification,
\[ \Rightarrow LHS = - \sqrt 2 \sin x\]
RHS is also equal to\[ - \sqrt 2 \sin x\]. So, we can write,
$LHS = RHS$.
Hence the equation is proved.
Note: We must be familiar with the following trigonometric identities used in this problem.
1. $\cos \left( {A \pm B} \right) = \cos \left( A \right)\cos \left( B \right) \mp \sin \left( A \right)\sin \left( B \right)$
2.$\cot \left( {A \pm B} \right) = \dfrac{{\cot A\cot B \mp 1}}{{\cot B \pm \cot A}}$
3.$\cos \left( {A + B} \right) - \cos \left( {A - B} \right) = - 2\sin \left( A \right)\sin \left( B \right)$
4.\[\cos \left( { - x} \right) = \cos \left( x \right)\]
Complete step-by-step answer:
We need to prove that $\cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right) = - \sqrt 2 \sin x$
Let us look at the LHS.
$LHS = \cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right)$
It is of the form $\cos \left( {A + B} \right) - \cos \left( {A - B} \right)$ .
We know that $\cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)$and $\cos \left( {A + B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)$
$ \Rightarrow \cos \left( {A + B} \right) - \cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right) - \left( {\cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)} \right)$
On further simplification, we get,
$ \Rightarrow \cos \left( {A + B} \right) - \cos \left( {A - B} \right) = - 2\sin \left( A \right)\sin \left( B \right)$
We can substitute the values,
\[ \Rightarrow \cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right) = - 2\sin \left( {\dfrac{{3\pi }}{4}} \right)\sin x\]
Then the LHS will become,
\[ \Rightarrow LHS = - 2\sin \left( {\dfrac{{3\pi }}{4}} \right)\sin x\]
We know that $\sin \dfrac{{3\pi }}{4} = \dfrac{1}{{\sqrt 2 }}$. On substituting, we get,
\[ \Rightarrow LHS = - 2\left( {\dfrac{1}{{\sqrt 2 }}} \right)\sin x\]
On simplification,
\[ \Rightarrow LHS = - \sqrt 2 \sin x\]
RHS is also equal to\[ - \sqrt 2 \sin x\]. So, we can write,
$LHS = RHS$.
Hence the equation is proved.
Note: We must be familiar with the following trigonometric identities used in this problem.
1. $\cos \left( {A \pm B} \right) = \cos \left( A \right)\cos \left( B \right) \mp \sin \left( A \right)\sin \left( B \right)$
2.$\cot \left( {A \pm B} \right) = \dfrac{{\cot A\cot B \mp 1}}{{\cot B \pm \cot A}}$
3.$\cos \left( {A + B} \right) - \cos \left( {A - B} \right) = - 2\sin \left( A \right)\sin \left( B \right)$
4.\[\cos \left( { - x} \right) = \cos \left( x \right)\]
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the chemical name and formula of sindoor class 11 chemistry CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

How do I get the molar mass of urea class 11 chemistry CBSE
