
Prove the following:
$\cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right) = - \sqrt 2 \sin x$
Answer
575.7k+ views
Hint: We can expand the LHS of the given equation using the trigonometric identities $\cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)$and $\cos \left( {A + B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)$. On simplification and further calculations, we will obtain the RHS of the equation. We can say the equation is true when $LHS = RHS$
Complete step-by-step answer:
We need to prove that $\cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right) = - \sqrt 2 \sin x$
Let us look at the LHS.
$LHS = \cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right)$
It is of the form $\cos \left( {A + B} \right) - \cos \left( {A - B} \right)$ .
We know that $\cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)$and $\cos \left( {A + B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)$
$ \Rightarrow \cos \left( {A + B} \right) - \cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right) - \left( {\cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)} \right)$
On further simplification, we get,
$ \Rightarrow \cos \left( {A + B} \right) - \cos \left( {A - B} \right) = - 2\sin \left( A \right)\sin \left( B \right)$
We can substitute the values,
\[ \Rightarrow \cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right) = - 2\sin \left( {\dfrac{{3\pi }}{4}} \right)\sin x\]
Then the LHS will become,
\[ \Rightarrow LHS = - 2\sin \left( {\dfrac{{3\pi }}{4}} \right)\sin x\]
We know that $\sin \dfrac{{3\pi }}{4} = \dfrac{1}{{\sqrt 2 }}$. On substituting, we get,
\[ \Rightarrow LHS = - 2\left( {\dfrac{1}{{\sqrt 2 }}} \right)\sin x\]
On simplification,
\[ \Rightarrow LHS = - \sqrt 2 \sin x\]
RHS is also equal to\[ - \sqrt 2 \sin x\]. So, we can write,
$LHS = RHS$.
Hence the equation is proved.
Note: We must be familiar with the following trigonometric identities used in this problem.
1. $\cos \left( {A \pm B} \right) = \cos \left( A \right)\cos \left( B \right) \mp \sin \left( A \right)\sin \left( B \right)$
2.$\cot \left( {A \pm B} \right) = \dfrac{{\cot A\cot B \mp 1}}{{\cot B \pm \cot A}}$
3.$\cos \left( {A + B} \right) - \cos \left( {A - B} \right) = - 2\sin \left( A \right)\sin \left( B \right)$
4.\[\cos \left( { - x} \right) = \cos \left( x \right)\]
Complete step-by-step answer:
We need to prove that $\cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right) = - \sqrt 2 \sin x$
Let us look at the LHS.
$LHS = \cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right)$
It is of the form $\cos \left( {A + B} \right) - \cos \left( {A - B} \right)$ .
We know that $\cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)$and $\cos \left( {A + B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)$
$ \Rightarrow \cos \left( {A + B} \right) - \cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right) - \left( {\cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)} \right)$
On further simplification, we get,
$ \Rightarrow \cos \left( {A + B} \right) - \cos \left( {A - B} \right) = - 2\sin \left( A \right)\sin \left( B \right)$
We can substitute the values,
\[ \Rightarrow \cos \left( {\dfrac{{3\pi }}{4} + x} \right) - \cos \left( {\dfrac{{3\pi }}{4} - x} \right) = - 2\sin \left( {\dfrac{{3\pi }}{4}} \right)\sin x\]
Then the LHS will become,
\[ \Rightarrow LHS = - 2\sin \left( {\dfrac{{3\pi }}{4}} \right)\sin x\]
We know that $\sin \dfrac{{3\pi }}{4} = \dfrac{1}{{\sqrt 2 }}$. On substituting, we get,
\[ \Rightarrow LHS = - 2\left( {\dfrac{1}{{\sqrt 2 }}} \right)\sin x\]
On simplification,
\[ \Rightarrow LHS = - \sqrt 2 \sin x\]
RHS is also equal to\[ - \sqrt 2 \sin x\]. So, we can write,
$LHS = RHS$.
Hence the equation is proved.
Note: We must be familiar with the following trigonometric identities used in this problem.
1. $\cos \left( {A \pm B} \right) = \cos \left( A \right)\cos \left( B \right) \mp \sin \left( A \right)\sin \left( B \right)$
2.$\cot \left( {A \pm B} \right) = \dfrac{{\cot A\cot B \mp 1}}{{\cot B \pm \cot A}}$
3.$\cos \left( {A + B} \right) - \cos \left( {A - B} \right) = - 2\sin \left( A \right)\sin \left( B \right)$
4.\[\cos \left( { - x} \right) = \cos \left( x \right)\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

