
Prove the following:
$\cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\dfrac{{3\pi }}{2} - x} \right) + \cot \left( {2\pi + x} \right)} \right] = 1$
Answer
576.3k+ views
Hint: We can take each of the terms in the LHS and simplify them. We can simplify the terms using the equations $\cos \left( {A + B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)$and $\cot \left( {A - B} \right) = \dfrac{{\cot A\cot B + 1}}{{\cot B - \cot A}}$. We can say that the equation is true when $LHS = RHS$
Complete step-by-step answer:
We need to prove$\cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\dfrac{{3\pi }}{2} - x} \right) + \cot \left( {2\pi + x} \right)} \right] = 1$ .
We can simplify the terms in the LHS of the equation we need to prove.
We can take the 1st term, $\cos \left( {\dfrac{{3\pi }}{2} + x} \right)$
We can use the trigonometric identity, $\cos \left( {A + B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)$.
We can substitute the values,
$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + x} \right) = \cos \left( {\dfrac{{3\pi }}{2}} \right)\cos \left( x \right) - \sin \left( {\dfrac{{3\pi }}{2}} \right)\sin \left( x \right)$
We know that $\cos \left( {\dfrac{{3\pi }}{2}} \right) = 0$and $\sin \left( {\dfrac{{3\pi }}{2}} \right) = - 1$. On substituting,
$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + x} \right) = 0\cos \left( x \right) - \left( { - 1} \right)\sin \left( x \right)$
On simplification,
$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + x} \right) = \sin \left( x \right)$ … (1)
We can take the 2nd term, $\cos \left( {2\pi + x} \right)$
We know that trigonometric functions are periodic and repeat the same values after the interval of $2\pi $.
$\cos \left( {2\pi + x} \right) = \cos \left( x \right)$ .. (2)
Now we can take the 3rd term, $\cot \left( {\dfrac{{3\pi }}{2} - x} \right)$,
We use the identity $\cot \left( {A - B} \right) = \dfrac{{\cot A\cot B + 1}}{{\cot B - \cot A}}$
We can substitute the values
$ \Rightarrow \cot \left( {\dfrac{{3\pi }}{2} - x} \right) = \dfrac{{\cot \dfrac{{3\pi }}{2}\cot x + 1}}{{\cot x - \cot \dfrac{{3\pi }}{2}}}$
We know that $\cot \left( {\dfrac{{3\pi }}{2}} \right) = 0$. So, we get,
$ \Rightarrow \cot \left( {\dfrac{{3\pi }}{2} - x} \right) = \dfrac{{0 \times \cot x + 1}}{{\cot x - 0}}$
On simplification,
$ \Rightarrow \cot \left( {\dfrac{{3\pi }}{2} - x} \right) = \dfrac{1}{{\cot x}}$
We know that $\cot x = \dfrac{{\cos x}}{{\sin x}}$.
$ \Rightarrow \cot \left( {\dfrac{{3\pi }}{2} - x} \right) = \dfrac{{\sin x}}{{\cos x}}$ … (3)
We can take the term, $\cot \left( {2\pi + x} \right)$
We know that trigonometric functions are periodic and repeat the same values after the interval of $2\pi $.
$ \Rightarrow \cot \left( {2\pi + x} \right) = \cot \left( x \right)$
We know that $\cot x = \dfrac{{\cos x}}{{\sin x}}$.
$ \Rightarrow \cot \left( {2\pi + x} \right) = \dfrac{{\cos x}}{{\sin x}}$… (4)
Now we can take the LHS,
$LHS = \cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\dfrac{{3\pi }}{2} - x} \right) + \cot \left( {2\pi + x} \right)} \right]$
We can substitute equation (1), (2), (3) and (4) in the LHS,
$ \Rightarrow LHS = \sin \left( x \right)\cos \left( x \right)\left[ {\dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}}} \right]$
After multiplication and simplification, we get,
$ \Rightarrow LHS = \dfrac{{{{\sin }^2}x\cos x}}{{\cos x}} + \dfrac{{{{\cos }^2}x\sin x}}{{\sin x}} = {\sin ^2}x + {\cos ^2}x$
We know that, ${\sin ^2}x + {\cos ^2}x = 1$.
$ \Rightarrow LHS = 1$.
RHS is also equal to 1. So, we can write,
$LHS = RHS$.
Hence the equation is proved.
Note: We must be familiar with the following trigonometric identities used in this problem.
1. $\cos \left( {A \pm B} \right) = \cos \left( A \right)\cos \left( B \right) \mp \sin \left( A \right)\sin \left( B \right)$
2.$\cot \left( {A \pm B} \right) = \dfrac{{\cot A\cot B \mp 1}}{{\cot B \pm \cot A}}$
3.${\sin ^2}x + {\cos ^2}x = 1$
4.$\cos \left( {2\pi + x} \right) = \cos \left( x \right)$
Complete step-by-step answer:
We need to prove$\cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\dfrac{{3\pi }}{2} - x} \right) + \cot \left( {2\pi + x} \right)} \right] = 1$ .
We can simplify the terms in the LHS of the equation we need to prove.
We can take the 1st term, $\cos \left( {\dfrac{{3\pi }}{2} + x} \right)$
We can use the trigonometric identity, $\cos \left( {A + B} \right) = \cos \left( A \right)\cos \left( B \right) - \sin \left( A \right)\sin \left( B \right)$.
We can substitute the values,
$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + x} \right) = \cos \left( {\dfrac{{3\pi }}{2}} \right)\cos \left( x \right) - \sin \left( {\dfrac{{3\pi }}{2}} \right)\sin \left( x \right)$
We know that $\cos \left( {\dfrac{{3\pi }}{2}} \right) = 0$and $\sin \left( {\dfrac{{3\pi }}{2}} \right) = - 1$. On substituting,
$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + x} \right) = 0\cos \left( x \right) - \left( { - 1} \right)\sin \left( x \right)$
On simplification,
$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + x} \right) = \sin \left( x \right)$ … (1)
We can take the 2nd term, $\cos \left( {2\pi + x} \right)$
We know that trigonometric functions are periodic and repeat the same values after the interval of $2\pi $.
$\cos \left( {2\pi + x} \right) = \cos \left( x \right)$ .. (2)
Now we can take the 3rd term, $\cot \left( {\dfrac{{3\pi }}{2} - x} \right)$,
We use the identity $\cot \left( {A - B} \right) = \dfrac{{\cot A\cot B + 1}}{{\cot B - \cot A}}$
We can substitute the values
$ \Rightarrow \cot \left( {\dfrac{{3\pi }}{2} - x} \right) = \dfrac{{\cot \dfrac{{3\pi }}{2}\cot x + 1}}{{\cot x - \cot \dfrac{{3\pi }}{2}}}$
We know that $\cot \left( {\dfrac{{3\pi }}{2}} \right) = 0$. So, we get,
$ \Rightarrow \cot \left( {\dfrac{{3\pi }}{2} - x} \right) = \dfrac{{0 \times \cot x + 1}}{{\cot x - 0}}$
On simplification,
$ \Rightarrow \cot \left( {\dfrac{{3\pi }}{2} - x} \right) = \dfrac{1}{{\cot x}}$
We know that $\cot x = \dfrac{{\cos x}}{{\sin x}}$.
$ \Rightarrow \cot \left( {\dfrac{{3\pi }}{2} - x} \right) = \dfrac{{\sin x}}{{\cos x}}$ … (3)
We can take the term, $\cot \left( {2\pi + x} \right)$
We know that trigonometric functions are periodic and repeat the same values after the interval of $2\pi $.
$ \Rightarrow \cot \left( {2\pi + x} \right) = \cot \left( x \right)$
We know that $\cot x = \dfrac{{\cos x}}{{\sin x}}$.
$ \Rightarrow \cot \left( {2\pi + x} \right) = \dfrac{{\cos x}}{{\sin x}}$… (4)
Now we can take the LHS,
$LHS = \cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\dfrac{{3\pi }}{2} - x} \right) + \cot \left( {2\pi + x} \right)} \right]$
We can substitute equation (1), (2), (3) and (4) in the LHS,
$ \Rightarrow LHS = \sin \left( x \right)\cos \left( x \right)\left[ {\dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}}} \right]$
After multiplication and simplification, we get,
$ \Rightarrow LHS = \dfrac{{{{\sin }^2}x\cos x}}{{\cos x}} + \dfrac{{{{\cos }^2}x\sin x}}{{\sin x}} = {\sin ^2}x + {\cos ^2}x$
We know that, ${\sin ^2}x + {\cos ^2}x = 1$.
$ \Rightarrow LHS = 1$.
RHS is also equal to 1. So, we can write,
$LHS = RHS$.
Hence the equation is proved.
Note: We must be familiar with the following trigonometric identities used in this problem.
1. $\cos \left( {A \pm B} \right) = \cos \left( A \right)\cos \left( B \right) \mp \sin \left( A \right)\sin \left( B \right)$
2.$\cot \left( {A \pm B} \right) = \dfrac{{\cot A\cot B \mp 1}}{{\cot B \pm \cot A}}$
3.${\sin ^2}x + {\cos ^2}x = 1$
4.$\cos \left( {2\pi + x} \right) = \cos \left( x \right)$
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

