
Prove the following
\[\cos {{510}^{\circ }}\cos {{330}^{\circ }}+\sin {{390}^{\circ }}\cos {{120}^{\circ }}=-1\]
Answer
578.1k+ views
Hint: To solve this question, we will consider the LHS of the above equation and applying the following trigonometric formula, we will get the RHS of the equation \[\cos \left( {{360}^{\circ }}+\theta \right)=\cos \theta ,\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta ,\cos \left( {{360}^{\circ }}-\theta \right)=+\cos \theta ,\cos \left( {{90}^{\circ }}+\theta \right)=-\sin \theta .\]
Complete step by step answer:
We are given that
\[\cos {{510}^{\circ }}\cos {{330}^{\circ }}+\sin {{390}^{\circ }}\cos {{120}^{\circ }}=-1.....\left( i \right)\]
To solve this question, let us consider the LHS of the above equation and make it equal to the RHS of the given equation (i). The LHs of the equation (i) is
\[\cos {{510}^{\circ }}\cos {{330}^{\circ }}+\sin {{390}^{\circ }}\cos {{120}^{\circ }}\]
Consider, \[\cos {{510}^{\circ }}=\cos \left( {{360}^{\circ }}+{{150}^{\circ }} \right)\left[ \text{As }{{510}^{\circ }}={{360}^{\circ }}+{{150}^{\circ }} \right]\]
\[\Rightarrow \cos {{510}^{\circ }}=\cos \left( {{360}^{\circ }}+{{150}^{\circ }} \right)\]
Now using the trigonometric identity, \[\cos \left( {{360}^{\circ }}+\theta \right)=\cos \theta \] in the above equation using \[\theta ={{150}^{\circ }},\] we have,
\[\Rightarrow \cos {{510}^{\circ }}=\cos \left( {{360}^{\circ }}+{{150}^{\circ }} \right)\]
\[\Rightarrow \cos {{510}^{\circ }}=\cos {{150}^{\circ }}\]
Again splitting \[{{150}^{\circ }}\] as \[{{180}^{\circ }}-{{30}^{\circ }}\] we have
\[\Rightarrow \cos {{150}^{\circ }}=\cos \left( {{180}^{\circ }}-{{30}^{\circ }} \right)\]
Using the trigonometric identity, \[\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta \] in the above obtained equation using \[\theta ={{30}^{\circ }},\] we have,
\[\cos \left( {{150}^{\circ }} \right)=\cos \left( {{180}^{\circ }}-{{30}^{\circ }} \right)=-\cos {{30}^{\circ }}\]
Similarly, we will solve \[\cos {{330}^{\circ }}\] and simplify it using trigonometric identities.
\[\Rightarrow \cos {{330}^{\circ }}=\cos \left( {{360}^{\circ }}-{{30}^{\circ }} \right)\]
As \[{{330}^{\circ }}={{360}^{\circ }}-{{30}^{\circ }}.\]
Using the identity, \[\cos \left( {{360}^{\circ }}-\theta \right)=\cos \theta \] in the above we have,
\[\Rightarrow \cos {{330}^{\circ }}=\cos \left( {{360}^{\circ }}-{{30}^{\circ }} \right)\]
\[\Rightarrow \cos {{330}^{\circ }}=\cos {{30}^{\circ }}\]
Hence, we have,
\[\cos {{510}^{\circ }}\cos {{330}^{\circ }}=-\cos {{30}^{\circ }}\cos {{30}^{\circ }}\]
\[\Rightarrow \cos {{510}^{\circ }}\cos {{330}^{\circ }}=-{{\cos }^{2}}{{30}^{\circ }}\]
Now consider the second part of the equation (i). We have,
\[\sin {{390}^{\circ }}=\sin \left( {{360}^{\circ }}+{{30}^{\circ }} \right)\]
\[\text{As }{{390}^{\circ }}={{360}^{\circ }}+{{30}^{\circ }}\]
Using the trigonometric identity, \[\sin \left( {{360}^{\circ }}+\theta \right)=\sin \theta \] and taking \[\theta ={{30}^{\circ }},\] we have,
\[\sin {{390}^{\circ }}=\sin \left( {{360}^{\circ }}+{{30}^{\circ }} \right)=\sin {{30}^{\circ }}\]
Similarly, consider \[\cos {{120}^{\circ }}.\]
\[\cos {{120}^{\circ }}=\cos \left( {{90}^{\circ }}+{{30}^{\circ }} \right)\]
Using the trigonometric formula, \[\cos \left( {{90}^{\circ }}+\theta \right)=-\sin \theta .\] We have,
\[\cos {{120}^{\circ }}=\cos \left( {{90}^{\circ }}+{{30}^{\circ }} \right)=-\sin {{30}^{\circ }}\]
\[\Rightarrow LHS=\cos {{510}^{\circ }}.\cos {{330}^{\circ }}+\sin {{390}^{\circ }}\cos {{120}^{\circ }}\]
\[\Rightarrow LHS=-\left( \cos {{30}^{\circ }} \right)\left( \cos {{30}^{\circ }} \right)+\sin {{30}^{\circ }}\left( -\sin {{30}^{\circ }} \right)\]
\[\Rightarrow LHS=-{{\cos }^{2}}{{30}^{\circ }}+\left( -{{\sin }^{2}}{{30}^{\circ }} \right)\]
\[\Rightarrow LHS=-\left( {{\cos }^{2}}{{30}^{\circ }}+{{\sin }^{2}}{{30}^{\circ }} \right)\]
\[\Rightarrow LHS=-1\]
As, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\forall \theta .\]
Hence, we have proved, \[\cos {{510}^{\circ }}\cos {{330}^{\circ }}+\sin {{390}^{\circ }}\cos {{120}^{\circ }}=-1.\]
Note: At the end where we have obtained \[-{{\cos }^{2}}{{30}^{\circ }}-{{\sin }^{2}}{{30}^{\circ }}\] we can also substitute the value of \[\sin {{30}^{\circ }}\] and \[\cos {{30}^{\circ }}\] and without using \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] to get the result.
\[\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2};\sin {{30}^{\circ }}=\dfrac{1}{2}\]
\[\Rightarrow {{\cos }^{2}}{{30}^{\circ }}=\dfrac{3}{4};{{\sin }^{2}}{{30}^{\circ }}=\dfrac{1}{4}\]
\[\Rightarrow {{\cos }^{2}}{{30}^{\circ }}+{{\sin }^{2}}{{30}^{\circ }}=\dfrac{3}{4}+\dfrac{1}{4}\]
\[\Rightarrow {{\cos }^{2}}{{30}^{\circ }}+{{\sin }^{2}}{{30}^{\circ }}=\dfrac{4}{4}\]
\[\Rightarrow {{\cos }^{2}}{{30}^{\circ }}+{{\sin }^{2}}{{30}^{\circ }}=1\]
And hence, \[-\left( {{\sin }^{2}}{{30}^{\circ }}+{{\cos }^{2}}{{30}^{\circ }} \right)=-1.\] Hence proved.
Complete step by step answer:
We are given that
\[\cos {{510}^{\circ }}\cos {{330}^{\circ }}+\sin {{390}^{\circ }}\cos {{120}^{\circ }}=-1.....\left( i \right)\]
To solve this question, let us consider the LHS of the above equation and make it equal to the RHS of the given equation (i). The LHs of the equation (i) is
\[\cos {{510}^{\circ }}\cos {{330}^{\circ }}+\sin {{390}^{\circ }}\cos {{120}^{\circ }}\]
Consider, \[\cos {{510}^{\circ }}=\cos \left( {{360}^{\circ }}+{{150}^{\circ }} \right)\left[ \text{As }{{510}^{\circ }}={{360}^{\circ }}+{{150}^{\circ }} \right]\]
\[\Rightarrow \cos {{510}^{\circ }}=\cos \left( {{360}^{\circ }}+{{150}^{\circ }} \right)\]
Now using the trigonometric identity, \[\cos \left( {{360}^{\circ }}+\theta \right)=\cos \theta \] in the above equation using \[\theta ={{150}^{\circ }},\] we have,
\[\Rightarrow \cos {{510}^{\circ }}=\cos \left( {{360}^{\circ }}+{{150}^{\circ }} \right)\]
\[\Rightarrow \cos {{510}^{\circ }}=\cos {{150}^{\circ }}\]
Again splitting \[{{150}^{\circ }}\] as \[{{180}^{\circ }}-{{30}^{\circ }}\] we have
\[\Rightarrow \cos {{150}^{\circ }}=\cos \left( {{180}^{\circ }}-{{30}^{\circ }} \right)\]
Using the trigonometric identity, \[\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta \] in the above obtained equation using \[\theta ={{30}^{\circ }},\] we have,
\[\cos \left( {{150}^{\circ }} \right)=\cos \left( {{180}^{\circ }}-{{30}^{\circ }} \right)=-\cos {{30}^{\circ }}\]
Similarly, we will solve \[\cos {{330}^{\circ }}\] and simplify it using trigonometric identities.
\[\Rightarrow \cos {{330}^{\circ }}=\cos \left( {{360}^{\circ }}-{{30}^{\circ }} \right)\]
As \[{{330}^{\circ }}={{360}^{\circ }}-{{30}^{\circ }}.\]
Using the identity, \[\cos \left( {{360}^{\circ }}-\theta \right)=\cos \theta \] in the above we have,
\[\Rightarrow \cos {{330}^{\circ }}=\cos \left( {{360}^{\circ }}-{{30}^{\circ }} \right)\]
\[\Rightarrow \cos {{330}^{\circ }}=\cos {{30}^{\circ }}\]
Hence, we have,
\[\cos {{510}^{\circ }}\cos {{330}^{\circ }}=-\cos {{30}^{\circ }}\cos {{30}^{\circ }}\]
\[\Rightarrow \cos {{510}^{\circ }}\cos {{330}^{\circ }}=-{{\cos }^{2}}{{30}^{\circ }}\]
Now consider the second part of the equation (i). We have,
\[\sin {{390}^{\circ }}=\sin \left( {{360}^{\circ }}+{{30}^{\circ }} \right)\]
\[\text{As }{{390}^{\circ }}={{360}^{\circ }}+{{30}^{\circ }}\]
Using the trigonometric identity, \[\sin \left( {{360}^{\circ }}+\theta \right)=\sin \theta \] and taking \[\theta ={{30}^{\circ }},\] we have,
\[\sin {{390}^{\circ }}=\sin \left( {{360}^{\circ }}+{{30}^{\circ }} \right)=\sin {{30}^{\circ }}\]
Similarly, consider \[\cos {{120}^{\circ }}.\]
\[\cos {{120}^{\circ }}=\cos \left( {{90}^{\circ }}+{{30}^{\circ }} \right)\]
Using the trigonometric formula, \[\cos \left( {{90}^{\circ }}+\theta \right)=-\sin \theta .\] We have,
\[\cos {{120}^{\circ }}=\cos \left( {{90}^{\circ }}+{{30}^{\circ }} \right)=-\sin {{30}^{\circ }}\]
\[\Rightarrow LHS=\cos {{510}^{\circ }}.\cos {{330}^{\circ }}+\sin {{390}^{\circ }}\cos {{120}^{\circ }}\]
\[\Rightarrow LHS=-\left( \cos {{30}^{\circ }} \right)\left( \cos {{30}^{\circ }} \right)+\sin {{30}^{\circ }}\left( -\sin {{30}^{\circ }} \right)\]
\[\Rightarrow LHS=-{{\cos }^{2}}{{30}^{\circ }}+\left( -{{\sin }^{2}}{{30}^{\circ }} \right)\]
\[\Rightarrow LHS=-\left( {{\cos }^{2}}{{30}^{\circ }}+{{\sin }^{2}}{{30}^{\circ }} \right)\]
\[\Rightarrow LHS=-1\]
As, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\forall \theta .\]
Hence, we have proved, \[\cos {{510}^{\circ }}\cos {{330}^{\circ }}+\sin {{390}^{\circ }}\cos {{120}^{\circ }}=-1.\]
Note: At the end where we have obtained \[-{{\cos }^{2}}{{30}^{\circ }}-{{\sin }^{2}}{{30}^{\circ }}\] we can also substitute the value of \[\sin {{30}^{\circ }}\] and \[\cos {{30}^{\circ }}\] and without using \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] to get the result.
\[\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2};\sin {{30}^{\circ }}=\dfrac{1}{2}\]
\[\Rightarrow {{\cos }^{2}}{{30}^{\circ }}=\dfrac{3}{4};{{\sin }^{2}}{{30}^{\circ }}=\dfrac{1}{4}\]
\[\Rightarrow {{\cos }^{2}}{{30}^{\circ }}+{{\sin }^{2}}{{30}^{\circ }}=\dfrac{3}{4}+\dfrac{1}{4}\]
\[\Rightarrow {{\cos }^{2}}{{30}^{\circ }}+{{\sin }^{2}}{{30}^{\circ }}=\dfrac{4}{4}\]
\[\Rightarrow {{\cos }^{2}}{{30}^{\circ }}+{{\sin }^{2}}{{30}^{\circ }}=1\]
And hence, \[-\left( {{\sin }^{2}}{{30}^{\circ }}+{{\cos }^{2}}{{30}^{\circ }} \right)=-1.\] Hence proved.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

