
Prove that the value of $\tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }}$.
Answer
604.5k+ views
Hint: Here, we can write ${{70}^{\circ }}={{20}^{\circ }}+{{50}^{\circ }}$, then apply tan on both the sides. After that apply the formulas.
Complete step-by-step answer:
$\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$, $\tan A=\cot ({{90}^{\circ }}-A)$ and $\tan A\cot A=1$.
Here, we have to prove that $\tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }}$.
For that first, we have to write:
${{70}^{\circ }}={{20}^{\circ }}+{{50}^{\circ }}$
Now, by applying tan on both the sides we get,
$\tan {{70}^{\circ }}=\tan ({{20}^{\circ }}+\tan {{50}^{\circ }})\text{ }.....\text{ (1)}$
RHS is in the form of $\tan (A+B)$. We have a formula for $\tan (A+B)$, the formula is given by:
$\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$ .
In our equation (1) we have $A={{20}^{\circ }}$, $B={{50}^{\circ }}$ and $A+B={{70}^{\circ }}$. Now by applying the above formula to equation (1) we obtain:
$\tan {{70}^{\circ }}=\dfrac{\tan {{20}^{\circ }}+\tan {{50}^{\circ }}}{1-\tan {{20}^{\circ }}\tan {{50}^{\circ }}}$
By cross multiplication our equation becomes,
$\tan {{70}^{\circ }}\left( 1-\tan {{20}^{\circ }}\tan {{50}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}$
In the next step, we have to multiply $\tan {{70}^{\circ }}$with $\left( 1-\tan {{20}^{\circ }}\tan {{50}^{\circ }} \right)$, we get the equation:
$\tan {{70}^{\circ }}-\tan {{70}^{\circ }}\tan {{20}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ }.....\text{ (2)}$
Next, we have to check that if there is any cancellation possible.
We are familiar with the formula that,
$\tan A=\cot ({{90}^{\circ }}-A)$
We can apply the above formula in equation (2) for further cancellation.
The formula can be applied for either $\tan {{20}^{\circ }}$ or $\tan {{70}^{\circ }}$.Here we are applying for $\tan {{20}^{\circ }}$. i.e. by applying the above formula we get,
$\begin{align}
& \tan {{20}^{\circ }}=\cot \left( {{90}^{\circ }}-{{20}^{\circ }} \right) \\
& \tan {{20}^{\circ }}=\cot {{70}^{\circ }}\text{ }....\text{ (3)} \\
\end{align}$
By substituting equation (3) in equation (2) we get:
$\tan {{70}^{\circ }}-\tan {{70}^{\circ }}\cot {{70}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ }....\text{ (4)}$
We also know that $\tan A\cot A=1$.
In equation (4) we have $A={{70}^{\circ }}$, so we can say that $\tan {{70}^{\circ }}\cot {{70}^{\circ }}=1$
Therefore, our equation (4) becomes:
$\begin{align}
& \tan {{70}^{\circ }}-1\times \tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\
& \tan {{70}^{\circ }}-\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\
\end{align}$
Next, by taking $\tan {{20}^{\circ }}$to the left side, $\tan {{20}^{\circ }}$ becomes $-\tan {{20}^{\circ }}$. Hence, our equation becomes:
$\tan {{70}^{\circ }}-\tan {{50}^{\circ }}-\tan {{20}^{\circ }}=\tan {{50}^{\circ }}\text{ }$
In the next step take $-\tan {{50}^{\circ }}$ to the right side, then $-\tan {{50}^{\circ }}$ becomes $\tan {{50}^{\circ }}$. So, we obtain the equation:
$\begin{align}
& \tan {{70}^{\circ }}-\tan {{20}^{\circ }}=\tan {{50}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\
& \tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }} \\
\end{align}$
Hence, we have proved that $\tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }}$.
Note: To solve this problem we should be familiar with the trigonometric formulas. Here, alternatively you can directly apply the formula for $\tan A-\tan B.$
Complete step-by-step answer:
$\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$, $\tan A=\cot ({{90}^{\circ }}-A)$ and $\tan A\cot A=1$.
Here, we have to prove that $\tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }}$.
For that first, we have to write:
${{70}^{\circ }}={{20}^{\circ }}+{{50}^{\circ }}$
Now, by applying tan on both the sides we get,
$\tan {{70}^{\circ }}=\tan ({{20}^{\circ }}+\tan {{50}^{\circ }})\text{ }.....\text{ (1)}$
RHS is in the form of $\tan (A+B)$. We have a formula for $\tan (A+B)$, the formula is given by:
$\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$ .
In our equation (1) we have $A={{20}^{\circ }}$, $B={{50}^{\circ }}$ and $A+B={{70}^{\circ }}$. Now by applying the above formula to equation (1) we obtain:
$\tan {{70}^{\circ }}=\dfrac{\tan {{20}^{\circ }}+\tan {{50}^{\circ }}}{1-\tan {{20}^{\circ }}\tan {{50}^{\circ }}}$
By cross multiplication our equation becomes,
$\tan {{70}^{\circ }}\left( 1-\tan {{20}^{\circ }}\tan {{50}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}$
In the next step, we have to multiply $\tan {{70}^{\circ }}$with $\left( 1-\tan {{20}^{\circ }}\tan {{50}^{\circ }} \right)$, we get the equation:
$\tan {{70}^{\circ }}-\tan {{70}^{\circ }}\tan {{20}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ }.....\text{ (2)}$
Next, we have to check that if there is any cancellation possible.
We are familiar with the formula that,
$\tan A=\cot ({{90}^{\circ }}-A)$
We can apply the above formula in equation (2) for further cancellation.
The formula can be applied for either $\tan {{20}^{\circ }}$ or $\tan {{70}^{\circ }}$.Here we are applying for $\tan {{20}^{\circ }}$. i.e. by applying the above formula we get,
$\begin{align}
& \tan {{20}^{\circ }}=\cot \left( {{90}^{\circ }}-{{20}^{\circ }} \right) \\
& \tan {{20}^{\circ }}=\cot {{70}^{\circ }}\text{ }....\text{ (3)} \\
\end{align}$
By substituting equation (3) in equation (2) we get:
$\tan {{70}^{\circ }}-\tan {{70}^{\circ }}\cot {{70}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ }....\text{ (4)}$
We also know that $\tan A\cot A=1$.
In equation (4) we have $A={{70}^{\circ }}$, so we can say that $\tan {{70}^{\circ }}\cot {{70}^{\circ }}=1$
Therefore, our equation (4) becomes:
$\begin{align}
& \tan {{70}^{\circ }}-1\times \tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\
& \tan {{70}^{\circ }}-\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\
\end{align}$
Next, by taking $\tan {{20}^{\circ }}$to the left side, $\tan {{20}^{\circ }}$ becomes $-\tan {{20}^{\circ }}$. Hence, our equation becomes:
$\tan {{70}^{\circ }}-\tan {{50}^{\circ }}-\tan {{20}^{\circ }}=\tan {{50}^{\circ }}\text{ }$
In the next step take $-\tan {{50}^{\circ }}$ to the right side, then $-\tan {{50}^{\circ }}$ becomes $\tan {{50}^{\circ }}$. So, we obtain the equation:
$\begin{align}
& \tan {{70}^{\circ }}-\tan {{20}^{\circ }}=\tan {{50}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\
& \tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }} \\
\end{align}$
Hence, we have proved that $\tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }}$.
Note: To solve this problem we should be familiar with the trigonometric formulas. Here, alternatively you can directly apply the formula for $\tan A-\tan B.$
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

