
Prove that the value of $\tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }}$.
Answer
603.6k+ views
Hint: Here, we can write ${{70}^{\circ }}={{20}^{\circ }}+{{50}^{\circ }}$, then apply tan on both the sides. After that apply the formulas.
Complete step-by-step answer:
$\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$, $\tan A=\cot ({{90}^{\circ }}-A)$ and $\tan A\cot A=1$.
Here, we have to prove that $\tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }}$.
For that first, we have to write:
${{70}^{\circ }}={{20}^{\circ }}+{{50}^{\circ }}$
Now, by applying tan on both the sides we get,
$\tan {{70}^{\circ }}=\tan ({{20}^{\circ }}+\tan {{50}^{\circ }})\text{ }.....\text{ (1)}$
RHS is in the form of $\tan (A+B)$. We have a formula for $\tan (A+B)$, the formula is given by:
$\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$ .
In our equation (1) we have $A={{20}^{\circ }}$, $B={{50}^{\circ }}$ and $A+B={{70}^{\circ }}$. Now by applying the above formula to equation (1) we obtain:
$\tan {{70}^{\circ }}=\dfrac{\tan {{20}^{\circ }}+\tan {{50}^{\circ }}}{1-\tan {{20}^{\circ }}\tan {{50}^{\circ }}}$
By cross multiplication our equation becomes,
$\tan {{70}^{\circ }}\left( 1-\tan {{20}^{\circ }}\tan {{50}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}$
In the next step, we have to multiply $\tan {{70}^{\circ }}$with $\left( 1-\tan {{20}^{\circ }}\tan {{50}^{\circ }} \right)$, we get the equation:
$\tan {{70}^{\circ }}-\tan {{70}^{\circ }}\tan {{20}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ }.....\text{ (2)}$
Next, we have to check that if there is any cancellation possible.
We are familiar with the formula that,
$\tan A=\cot ({{90}^{\circ }}-A)$
We can apply the above formula in equation (2) for further cancellation.
The formula can be applied for either $\tan {{20}^{\circ }}$ or $\tan {{70}^{\circ }}$.Here we are applying for $\tan {{20}^{\circ }}$. i.e. by applying the above formula we get,
$\begin{align}
& \tan {{20}^{\circ }}=\cot \left( {{90}^{\circ }}-{{20}^{\circ }} \right) \\
& \tan {{20}^{\circ }}=\cot {{70}^{\circ }}\text{ }....\text{ (3)} \\
\end{align}$
By substituting equation (3) in equation (2) we get:
$\tan {{70}^{\circ }}-\tan {{70}^{\circ }}\cot {{70}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ }....\text{ (4)}$
We also know that $\tan A\cot A=1$.
In equation (4) we have $A={{70}^{\circ }}$, so we can say that $\tan {{70}^{\circ }}\cot {{70}^{\circ }}=1$
Therefore, our equation (4) becomes:
$\begin{align}
& \tan {{70}^{\circ }}-1\times \tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\
& \tan {{70}^{\circ }}-\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\
\end{align}$
Next, by taking $\tan {{20}^{\circ }}$to the left side, $\tan {{20}^{\circ }}$ becomes $-\tan {{20}^{\circ }}$. Hence, our equation becomes:
$\tan {{70}^{\circ }}-\tan {{50}^{\circ }}-\tan {{20}^{\circ }}=\tan {{50}^{\circ }}\text{ }$
In the next step take $-\tan {{50}^{\circ }}$ to the right side, then $-\tan {{50}^{\circ }}$ becomes $\tan {{50}^{\circ }}$. So, we obtain the equation:
$\begin{align}
& \tan {{70}^{\circ }}-\tan {{20}^{\circ }}=\tan {{50}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\
& \tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }} \\
\end{align}$
Hence, we have proved that $\tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }}$.
Note: To solve this problem we should be familiar with the trigonometric formulas. Here, alternatively you can directly apply the formula for $\tan A-\tan B.$
Complete step-by-step answer:
$\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$, $\tan A=\cot ({{90}^{\circ }}-A)$ and $\tan A\cot A=1$.
Here, we have to prove that $\tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }}$.
For that first, we have to write:
${{70}^{\circ }}={{20}^{\circ }}+{{50}^{\circ }}$
Now, by applying tan on both the sides we get,
$\tan {{70}^{\circ }}=\tan ({{20}^{\circ }}+\tan {{50}^{\circ }})\text{ }.....\text{ (1)}$
RHS is in the form of $\tan (A+B)$. We have a formula for $\tan (A+B)$, the formula is given by:
$\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$ .
In our equation (1) we have $A={{20}^{\circ }}$, $B={{50}^{\circ }}$ and $A+B={{70}^{\circ }}$. Now by applying the above formula to equation (1) we obtain:
$\tan {{70}^{\circ }}=\dfrac{\tan {{20}^{\circ }}+\tan {{50}^{\circ }}}{1-\tan {{20}^{\circ }}\tan {{50}^{\circ }}}$
By cross multiplication our equation becomes,
$\tan {{70}^{\circ }}\left( 1-\tan {{20}^{\circ }}\tan {{50}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}$
In the next step, we have to multiply $\tan {{70}^{\circ }}$with $\left( 1-\tan {{20}^{\circ }}\tan {{50}^{\circ }} \right)$, we get the equation:
$\tan {{70}^{\circ }}-\tan {{70}^{\circ }}\tan {{20}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ }.....\text{ (2)}$
Next, we have to check that if there is any cancellation possible.
We are familiar with the formula that,
$\tan A=\cot ({{90}^{\circ }}-A)$
We can apply the above formula in equation (2) for further cancellation.
The formula can be applied for either $\tan {{20}^{\circ }}$ or $\tan {{70}^{\circ }}$.Here we are applying for $\tan {{20}^{\circ }}$. i.e. by applying the above formula we get,
$\begin{align}
& \tan {{20}^{\circ }}=\cot \left( {{90}^{\circ }}-{{20}^{\circ }} \right) \\
& \tan {{20}^{\circ }}=\cot {{70}^{\circ }}\text{ }....\text{ (3)} \\
\end{align}$
By substituting equation (3) in equation (2) we get:
$\tan {{70}^{\circ }}-\tan {{70}^{\circ }}\cot {{70}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ }....\text{ (4)}$
We also know that $\tan A\cot A=1$.
In equation (4) we have $A={{70}^{\circ }}$, so we can say that $\tan {{70}^{\circ }}\cot {{70}^{\circ }}=1$
Therefore, our equation (4) becomes:
$\begin{align}
& \tan {{70}^{\circ }}-1\times \tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\
& \tan {{70}^{\circ }}-\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\
\end{align}$
Next, by taking $\tan {{20}^{\circ }}$to the left side, $\tan {{20}^{\circ }}$ becomes $-\tan {{20}^{\circ }}$. Hence, our equation becomes:
$\tan {{70}^{\circ }}-\tan {{50}^{\circ }}-\tan {{20}^{\circ }}=\tan {{50}^{\circ }}\text{ }$
In the next step take $-\tan {{50}^{\circ }}$ to the right side, then $-\tan {{50}^{\circ }}$ becomes $\tan {{50}^{\circ }}$. So, we obtain the equation:
$\begin{align}
& \tan {{70}^{\circ }}-\tan {{20}^{\circ }}=\tan {{50}^{\circ }}+\tan {{50}^{\circ }}\text{ } \\
& \tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }} \\
\end{align}$
Hence, we have proved that $\tan {{70}^{\circ }}-\tan {{20}^{\circ }}=2\tan {{50}^{\circ }}$.
Note: To solve this problem we should be familiar with the trigonometric formulas. Here, alternatively you can directly apply the formula for $\tan A-\tan B.$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

