
Prove that the term independent of x in the expansion of ${{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ }$ is $\dfrac{1.3.5...\left( 2n-1 \right)}{n!}{{.2}^{n}}$.
Answer
563.1k+ views
Hint: To prove that the term independent of x in the expansion of ${{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ }$ is $\dfrac{1.3.5...\left( 2n-1 \right)}{n!}{{.2}^{n}}$ , we will use the formula ${{T}_{r+1}}{{=}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}.{{b}^{r}}$ for the expansion of ${{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ }$ which is for the form ${{\left( a+b \right)}^{n}}$ . We will get ${{T}_{r+1}}{{=}^{2n}}{{C}_{r}}{{\left( x \right)}^{2n-2r}}$ . To become independent of x, the exponent $2n-2r$ must be 0. Hence, $n=r$ . We can write the coefficient of term independent of x by substituting $n=r$ in $^{2n}{{C}_{r}}$ . We will get $^{2n}{{C}_{n}}$ . Now expand this using $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ to get $\dfrac{1\times 2\times 3\times 4\times 5\times 6\times ...\times \left( 2n-1 \right)\times 2n}{n!n!}$ . By rearranging, we get \[\dfrac{\left[ 1\times 3\times 5\times 7\times ...\times \left( 2n-1 \right) \right]\times {{2}^{n}}\left[ 1\times 2\times 3\times ...\times n \right]}{n!n!}\] . By solving further, we will reach the required result.
Complete step-by-step solution:
We have to prove that the term independent of x in the expansion of ${{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ }$ is $\dfrac{1.3.5...\left( 2n-1 \right)}{n!}{{.2}^{n}}$ .
Let us consider ${{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ }$ .
We know that the general term of expansion ${{\left( a+b \right)}^{n}}$ is given as
${{T}_{r+1}}{{=}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}.{{b}^{r}}$
Hence, we can write the term of expansion ${{\left( x+\dfrac{1}{x} \right)}^{2n}}$ as
\[{{T}_{r+1}}{{=}^{2n}}{{C}_{r}}{{\left( x \right)}^{2n-r}}.{{\left( \dfrac{1}{x} \right)}^{r}}\]
We can write this as
\[{{T}_{r+1}}{{=}^{2n}}{{C}_{r}}{{\left( x \right)}^{2n-r}}.{{\left( x \right)}^{-r}}\]
We know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ .
$\begin{align}
& \Rightarrow {{T}_{r+1}}{{=}^{2n}}{{C}_{r}}{{\left( x \right)}^{2n-r-r}} \\
& \Rightarrow {{T}_{r+1}}{{=}^{2n}}{{C}_{r}}{{\left( x \right)}^{2n-2r}} \\
\end{align}$
To become independent of x, the exponent $2n-2r$ must be 0. Thus, we can write
$2n-2r=0$
When we solve this, we get
$\begin{align}
& 2n=2r \\
& \Rightarrow n=r \\
\end{align}$
Now, we can write the coefficient of term independent of x by substituting $n=r$ in $^{2n}{{C}_{r}}$ .
${{\Rightarrow }^{2n}}{{C}_{n}}$
We know that $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ .
$\begin{align}
& {{\Rightarrow }^{2n}}{{C}_{n}}=\dfrac{2n!}{n!\left( 2n-n \right)!} \\
& {{\Rightarrow }^{2n}}{{C}_{n}}=\dfrac{2n!}{n!n!} \\
\end{align}$
Let us expand the factorial. We know that $n!=1\times 2\times 3\times ...\times \left( n-1 \right)\times n$ . Hence,
$\dfrac{2n!}{n!n!}=\dfrac{1\times 2\times 3\times 4\times 5\times 6\times ...\times \left( 2n-1 \right)\times 2n}{n!n!}$
We can write this as follows by collecting odd and even terms separately.
\[\Rightarrow \dfrac{\left[ 1\times 3\times 5\times 7\times ...\times \left( 2n-1 \right) \right]\times \left[ 2\times 4\times 6\times ...\times 2n \right]}{n!n!}\]
Let us now take 2 commons from the even terms. We will get
\[\Rightarrow \dfrac{\left[ 1\times 3\times 5\times 7\times ...\times \left( 2n-1 \right) \right]\times {{2}^{n}}\left[ 1\times 2\times 3\times ...\times n \right]}{n!n!}\]
We know that \[n!=1\times 2\times 3\times ...\times n\] . Hence,
\[\Rightarrow \dfrac{\left[ 1\times 3\times 5\times 7\times ...\times \left( 2n-1 \right) \right]\times {{2}^{n}}n!}{n!n!}\]
Now, we can cancel n! from numerator and denominator. We will get
\[\Rightarrow \dfrac{\left[ 1\times 3\times 5\times 7\times ...\times \left( 2n-1 \right) \right]\times {{2}^{n}}}{n!}\]
Hence, the term independent of x in the expansion of ${{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ }$ is $\dfrac{1.3.5...\left( 2n-1 \right)}{n!}{{.2}^{n}}$ .
Thus proved.
Note: You may make mistake when writing the formula ${{T}_{r+1}}{{=}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}.{{b}^{r}}$ as ${{T}_{r+1}}{{=}^{n}}{{C}_{r}}{{\left( b \right)}^{n-r}}.{{a}^{r}}$ . Also, an error can be expected when writing $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ as $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n+r \right)!}$ . When taking 2 outside from the even set, be careful to write ${{2}^{n}}$ instead of 2.
Complete step-by-step solution:
We have to prove that the term independent of x in the expansion of ${{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ }$ is $\dfrac{1.3.5...\left( 2n-1 \right)}{n!}{{.2}^{n}}$ .
Let us consider ${{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ }$ .
We know that the general term of expansion ${{\left( a+b \right)}^{n}}$ is given as
${{T}_{r+1}}{{=}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}.{{b}^{r}}$
Hence, we can write the term of expansion ${{\left( x+\dfrac{1}{x} \right)}^{2n}}$ as
\[{{T}_{r+1}}{{=}^{2n}}{{C}_{r}}{{\left( x \right)}^{2n-r}}.{{\left( \dfrac{1}{x} \right)}^{r}}\]
We can write this as
\[{{T}_{r+1}}{{=}^{2n}}{{C}_{r}}{{\left( x \right)}^{2n-r}}.{{\left( x \right)}^{-r}}\]
We know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ .
$\begin{align}
& \Rightarrow {{T}_{r+1}}{{=}^{2n}}{{C}_{r}}{{\left( x \right)}^{2n-r-r}} \\
& \Rightarrow {{T}_{r+1}}{{=}^{2n}}{{C}_{r}}{{\left( x \right)}^{2n-2r}} \\
\end{align}$
To become independent of x, the exponent $2n-2r$ must be 0. Thus, we can write
$2n-2r=0$
When we solve this, we get
$\begin{align}
& 2n=2r \\
& \Rightarrow n=r \\
\end{align}$
Now, we can write the coefficient of term independent of x by substituting $n=r$ in $^{2n}{{C}_{r}}$ .
${{\Rightarrow }^{2n}}{{C}_{n}}$
We know that $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ .
$\begin{align}
& {{\Rightarrow }^{2n}}{{C}_{n}}=\dfrac{2n!}{n!\left( 2n-n \right)!} \\
& {{\Rightarrow }^{2n}}{{C}_{n}}=\dfrac{2n!}{n!n!} \\
\end{align}$
Let us expand the factorial. We know that $n!=1\times 2\times 3\times ...\times \left( n-1 \right)\times n$ . Hence,
$\dfrac{2n!}{n!n!}=\dfrac{1\times 2\times 3\times 4\times 5\times 6\times ...\times \left( 2n-1 \right)\times 2n}{n!n!}$
We can write this as follows by collecting odd and even terms separately.
\[\Rightarrow \dfrac{\left[ 1\times 3\times 5\times 7\times ...\times \left( 2n-1 \right) \right]\times \left[ 2\times 4\times 6\times ...\times 2n \right]}{n!n!}\]
Let us now take 2 commons from the even terms. We will get
\[\Rightarrow \dfrac{\left[ 1\times 3\times 5\times 7\times ...\times \left( 2n-1 \right) \right]\times {{2}^{n}}\left[ 1\times 2\times 3\times ...\times n \right]}{n!n!}\]
We know that \[n!=1\times 2\times 3\times ...\times n\] . Hence,
\[\Rightarrow \dfrac{\left[ 1\times 3\times 5\times 7\times ...\times \left( 2n-1 \right) \right]\times {{2}^{n}}n!}{n!n!}\]
Now, we can cancel n! from numerator and denominator. We will get
\[\Rightarrow \dfrac{\left[ 1\times 3\times 5\times 7\times ...\times \left( 2n-1 \right) \right]\times {{2}^{n}}}{n!}\]
Hence, the term independent of x in the expansion of ${{\left( x+\dfrac{1}{x} \right)}^{2n}}\text{ }$ is $\dfrac{1.3.5...\left( 2n-1 \right)}{n!}{{.2}^{n}}$ .
Thus proved.
Note: You may make mistake when writing the formula ${{T}_{r+1}}{{=}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}.{{b}^{r}}$ as ${{T}_{r+1}}{{=}^{n}}{{C}_{r}}{{\left( b \right)}^{n-r}}.{{a}^{r}}$ . Also, an error can be expected when writing $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ as $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n+r \right)!}$ . When taking 2 outside from the even set, be careful to write ${{2}^{n}}$ instead of 2.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

