
Prove that the square of any integer is of form $5q,5q+1,5q+4$ for some integer $q$.
Answer
564.3k+ views
Hint: In the above question, first compare the given term with Euclid Division Lemma, then take the value of reminder $r=0,1,2,3,4$ and $b=5$. At last take the square of each term and rearrange in the form of Euclid lemma.
Complete step-by-step solution:
For the given question, first take the Euclid Division Lemma and compare the given terms.
By Division Lemma, we have
$a=bm+r$, where$0\le r\ge 4$ …………….(i)
It means $r$is greater or equal to $0$ and less than or equal to $4$.
If we are putting $b=5$ then,
$a=5m+r$
Now we have to put values of $r$, the we get
If $r=0,$ then $a=5m$
If we take $r=1,\,\,then\,\,a=5m+1$
If we take $r=2,\,\,then\,a=5m+2$
If we take $r=3\,\,then\,\,a=5m+3$
And at last if we take $r=4\,\,then\,\,a=5m+4$
They all are integers, now we have to check whether their squares are integers or not.
Then, on taking square of each term and arranging in the form of Division lemma, we get
${{\left( 5m \right)}^{2}}=25{{m}^{2}}$
After rearranging,
$\Rightarrow$${{\left( 5m \right)}^{2}}=5(5{{m}^{2}})$$=$$5q$
Where $q$ is some integer.
Now on squaring of $5m+1$, we get
$\Rightarrow$${{(5m+1)}^{2}}=25{{m}^{2}}+10m+1$
On applying ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ in the above equation.
$\Rightarrow$${(5m+1)^2}=5(5m^2+2m)+1$
$\Rightarrow$${(5m+1)^2}=5q+1$
Where $q=5{{m}^{2}}+2m$ is some integer.
Now on squaring $5m+2$ with the help of same identity, we get
${{\left( 5m+2 \right)}^{2}}=25{{m}^{2}}+20m+4$
On rearranging in the form of Division Lemma,
$\Rightarrow$${{\left( 5m+2 \right)}^{2}}=5(5{{m}^{2}}+4m)+4$
$\Rightarrow$${{\left( 5m+2 \right)}^{2}}=5q+4$
Similarly $q$ is some integer.
Now on squaring $5m+3$ we get
$\Rightarrow$${{\left( 5m+3 \right)}^{2}}=25{{m}^{2}}+30m+9$
We can write $9$ as $5+4$ so that
$\Rightarrow$${{\left( 5m+3 \right)}^{2}}=25{{m}^{2}}+30m+5+4$
On rearranging in the form of Division lemma, we get
$\Rightarrow$${{\left( 5m+3 \right)}^{2}}=5(5{{m}^{2}}+6m+1)+4$
$\Rightarrow$${{\left( 5m+3 \right)}^{2}}=5q+4$
Where q is some integer.
Now on squaring $5m+4$, we get
$\Rightarrow$${{\left( 5m+4 \right)}^{2}}=25{{m}^{2}}+40m+16$
We can write $16$ as $15+1$, so that the above equation
$\Rightarrow$${{\left( 5m+4 \right)}^{2}}=25{{m}^{2}}+40m+15+1$
On rearranging in the form of Division Lemma , we get
$\Rightarrow$${{\left( 5m+4 \right)}^{2}}=5(5{{m}^{2}}+8m+3)+1$
And we write it as
$\Rightarrow$${{\left( 5m+4 \right)}^{2}}=5q+1$
Similarly $q$ is some integer.
Hence, the square of any positive integer is of the form $5q\,\,or\,\,5q+1\,\,or\,\,5q+4$ for some integer $q$.
Note: Euclid division lemma- If we have two positive integers a and b , then there would be a whole number q and r that satisfy the equation $a=bq+r $.
For this type of question we have to rearrange the given lemma.
In such types of problems, students are unable to distinguish between Euclid Division Lemma and Euclid's Algorithm and they make mistakes. The Euclid Division Algorithm is related to LCM and HCF.
Euclid Division Algorithm- This algorithm is the process of applying Euclid’s division lemma in succession several times to obtain the HCF of any two numbers.
Complete step-by-step solution:
For the given question, first take the Euclid Division Lemma and compare the given terms.
By Division Lemma, we have
$a=bm+r$, where$0\le r\ge 4$ …………….(i)
It means $r$is greater or equal to $0$ and less than or equal to $4$.
If we are putting $b=5$ then,
$a=5m+r$
Now we have to put values of $r$, the we get
If $r=0,$ then $a=5m$
If we take $r=1,\,\,then\,\,a=5m+1$
If we take $r=2,\,\,then\,a=5m+2$
If we take $r=3\,\,then\,\,a=5m+3$
And at last if we take $r=4\,\,then\,\,a=5m+4$
They all are integers, now we have to check whether their squares are integers or not.
Then, on taking square of each term and arranging in the form of Division lemma, we get
${{\left( 5m \right)}^{2}}=25{{m}^{2}}$
After rearranging,
$\Rightarrow$${{\left( 5m \right)}^{2}}=5(5{{m}^{2}})$$=$$5q$
Where $q$ is some integer.
Now on squaring of $5m+1$, we get
$\Rightarrow$${{(5m+1)}^{2}}=25{{m}^{2}}+10m+1$
On applying ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ in the above equation.
$\Rightarrow$${(5m+1)^2}=5(5m^2+2m)+1$
$\Rightarrow$${(5m+1)^2}=5q+1$
Where $q=5{{m}^{2}}+2m$ is some integer.
Now on squaring $5m+2$ with the help of same identity, we get
${{\left( 5m+2 \right)}^{2}}=25{{m}^{2}}+20m+4$
On rearranging in the form of Division Lemma,
$\Rightarrow$${{\left( 5m+2 \right)}^{2}}=5(5{{m}^{2}}+4m)+4$
$\Rightarrow$${{\left( 5m+2 \right)}^{2}}=5q+4$
Similarly $q$ is some integer.
Now on squaring $5m+3$ we get
$\Rightarrow$${{\left( 5m+3 \right)}^{2}}=25{{m}^{2}}+30m+9$
We can write $9$ as $5+4$ so that
$\Rightarrow$${{\left( 5m+3 \right)}^{2}}=25{{m}^{2}}+30m+5+4$
On rearranging in the form of Division lemma, we get
$\Rightarrow$${{\left( 5m+3 \right)}^{2}}=5(5{{m}^{2}}+6m+1)+4$
$\Rightarrow$${{\left( 5m+3 \right)}^{2}}=5q+4$
Where q is some integer.
Now on squaring $5m+4$, we get
$\Rightarrow$${{\left( 5m+4 \right)}^{2}}=25{{m}^{2}}+40m+16$
We can write $16$ as $15+1$, so that the above equation
$\Rightarrow$${{\left( 5m+4 \right)}^{2}}=25{{m}^{2}}+40m+15+1$
On rearranging in the form of Division Lemma , we get
$\Rightarrow$${{\left( 5m+4 \right)}^{2}}=5(5{{m}^{2}}+8m+3)+1$
And we write it as
$\Rightarrow$${{\left( 5m+4 \right)}^{2}}=5q+1$
Similarly $q$ is some integer.
Hence, the square of any positive integer is of the form $5q\,\,or\,\,5q+1\,\,or\,\,5q+4$ for some integer $q$.
Note: Euclid division lemma- If we have two positive integers a and b , then there would be a whole number q and r that satisfy the equation $a=bq+r $.
For this type of question we have to rearrange the given lemma.
In such types of problems, students are unable to distinguish between Euclid Division Lemma and Euclid's Algorithm and they make mistakes. The Euclid Division Algorithm is related to LCM and HCF.
Euclid Division Algorithm- This algorithm is the process of applying Euclid’s division lemma in succession several times to obtain the HCF of any two numbers.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

