
Prove that the diagonal of a square it into two congruent triangle.
Answer
597.9k+ views
Hint: Draw a square of the name ABCD. Then join AC, after that consider two triangles ABC, ADC and prove them they are congruent using side-side-side action of congruent.
Complete step by step answer:
Let us assume a square as ABCD. Now according to properties of squares we can say that AB=BC=CD=DA as all the sides of the square are equal. We can also write that \[\angle DAB=\angle ABC=\angle BCD=\angle CDA=90{}^\circ \] as all the interior angles of the square is 90°.
Now in square ABCD, AC is joined.
So to solve the question we have to prove that triangle ABC and ADC is congruent to each other. We can prove them by only one of the following axioms which are:
(II) Side-Angle-Side (SAS): which means that if two sides are one included angle is congruent to corresponding parts of another triangle, the triangles are congruent.
(III) Angle-Side-Angle (ASA): This means that if two angles and the included side of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.
(IV) Angle-Angle-Angle (AAA): which means that if two angles and one non included side of triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.
(V) Hypotenuse-Leg (HL): This means that if the hypotenuse and leg of one right triangle are congruent to the congruent parts of another triangle, the right triangles are congruent.
(II) BC=DC as all the sides of square is equal
(III) AC is the common side to both triangles ABC and ADC.
Complete step by step answer:
Let us assume a square as ABCD. Now according to properties of squares we can say that AB=BC=CD=DA as all the sides of the square are equal. We can also write that \[\angle DAB=\angle ABC=\angle BCD=\angle CDA=90{}^\circ \] as all the interior angles of the square is 90°.
Now in square ABCD, AC is joined.
So to solve the question we have to prove that triangle ABC and ADC is congruent to each other. We can prove them by only one of the following axioms which are:
- (I) Side-Side-Side (SSS): which means that if three sides of a triangle are congruent to three sides of another triangle, the triangles are congruent.
Now let’s consider triangles ABC and ADC we see,
- (I) AB=AD as all the sides of the square are equal.
By the above three points we say that ΔABC ≅ ΔADC using Side-Side-Side axiom of congruency. Hence proved that the diagonal of square divides the square into two congruent triangles
Note: Before solving the problem students should know the properties of squares and they should also know the axioms for congruence of triangles.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

10 examples of evaporation in daily life with explanations

