
Prove that the circumcenter, orthocenter, incenter and centroid of the triangle formed by the points A (-1, 11), B (-9, -8) and C (15,-2) are collinear, without actually finding any of them.
Answer
514.2k+ views
1 likes
Hint: Here in this question we will use the concept of distance formula so that we can prove that the points are collinear.
Definition of collinear points: - Three or more points are said to be collinear if they lie on a single straight line.
We will use distance formula between the two points and that is mentioned below: -
d= distance between two points.
Complete step-by-step answer:
Draw a triangle ABC having points A (-1, 11), B (-9, -8) and C (15,-2)
Points for AB are A (-1, 11) and B (-9, -8)
(Putting values in distance formula )
Points for BC are B (-9, -8) and C (15, -2)
(Putting values in distance formula )
Points for AC are A (-1, 11) and C (15, -2)
(Putting values in distance formula )
From above we observe that side AB and AC are equal so the given points make an isosceles triangle. Isosceles triangle is that triangle whose two sides are equal and corresponding angles to those sides are also equal. Therefore
Now draw perpendicular from point ‘A’ to the side BC bisecting side BC into two equal parts. As we know from the isosceles triangle property that perpendicular is same as median in isosceles triangle so therefore AD will be called as altitude, perpendicular bisector and median to the side BC.
Here without solving we can clearly see that circumcenter, orthocentre, incenter and centroid all lie in the same line AD.
Note: Some students may find confusion in the definition of all these centres of the triangle so below all definitions are being mentioned for greater understanding.
*Circumcenter: - It is defined as that point where all the perpendicular bisectors of the sides of the triangle intersect.
*Orthocenter: -It is the intersection of three altitudes of a triangle.
*Incenter: -It is a point where internal angle bisectors of a triangle meet.
*Centroid: -It is the intersection of the three medians of the triangle.
Definition of collinear points: - Three or more points are said to be collinear if they lie on a single straight line.
We will use distance formula between the two points
Complete step-by-step answer:
Draw a triangle ABC having points A (-1, 11), B (-9, -8) and C (15,-2)

Points for AB are A (-1, 11) and B (-9, -8)
Points for BC are B (-9, -8) and C (15, -2)
Points for AC are A (-1, 11) and C (15, -2)
From above we observe that side AB and AC are equal so the given points make an isosceles triangle. Isosceles triangle is that triangle whose two sides are equal and corresponding angles to those sides are also equal. Therefore
Now draw perpendicular from point ‘A’ to the side BC bisecting side BC into two equal parts. As we know from the isosceles triangle property that perpendicular is same as median in isosceles triangle so therefore AD will be called as altitude, perpendicular bisector and median to the side BC.

Here without solving we can clearly see that circumcenter, orthocentre, incenter and centroid all lie in the same line AD.
Note: Some students may find confusion in the definition of all these centres of the triangle so below all definitions are being mentioned for greater understanding.
*Circumcenter: - It is defined as that point where all the perpendicular bisectors of the sides of the triangle intersect.
*Orthocenter: -It is the intersection of three altitudes of a triangle.
*Incenter: -It is a point where internal angle bisectors of a triangle meet.
*Centroid: -It is the intersection of the three medians of the triangle.
Latest Vedantu courses for you
Grade 7 | CBSE | SCHOOL | English
Vedantu 7 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹45,300 per year
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
