
Prove that the average of the numbers \[n\sin {n^ \circ },n = 2,4,6,...,180\] is \[\cot {1^ \circ }\].
Answer
577.8k+ views
Hint:
First, we will determine the total number of terms. Then, we will put the value of n in the given equation. Then, we will apply trigonometric identities. On simplification, we will get the result.
Complete step by step solution:
Let n be the total number of terms, a be the first term, \[{a_n}\] be the last term and d is the difference between two terms.
Therefore,
\[
a = 2 \\
{a_n} = 180 \\
d = 2 \\
\]
Total number of terms
\[ \Rightarrow n = \dfrac{{{a_n} - a}}{d} + 1\]
On substituting the values, we get
\[ \Rightarrow n = \dfrac{{180 - 2}}{2} + 1\]
On simplification we get
\[ \Rightarrow n = \dfrac{{178}}{2} + 1\]
On division we get
\[ \Rightarrow n = 89 + 1\]
Hence, we have
\[ \Rightarrow n = 90\]
Hence, the total number of terms are 90.
Given,
\[n\sin {n^ \circ };n = 2,4,6,...,180\]
Therefore, \[n\sin {n^ \circ } = 2\sin {2^ \circ } + 4\sin {4^ \circ } + 6\sin {6^ \circ } + ... + 180\sin {180^ \circ }\] …. (1)
We know that,
\[\sin \theta = \sin ({180^ \circ } - \theta )\]
And \[\sin {180^ \circ } = 0\]
\[ \Rightarrow \sin {178^ \circ } = \sin {(180 - 2)^ \circ }\]
So, we have
\[ \Rightarrow \sin {178^ \circ } = \sin {2^ \circ }\]
Similarly,
\[ \Rightarrow \sin {176^ \circ } = \sin {(180 - 4)^ \circ }\]
We have,
\[ \Rightarrow \sin {176^ \circ } = \sin {4^ \circ }\]
Similarly, we have
\[ \Rightarrow \sin {94^ \circ } = \sin {86^ \circ }\]
\[ \Rightarrow \sin {92^ \circ } = \sin {88^ \circ }\]
Putting all these values in equation (1)
\[ \Rightarrow n\sin {n^ \circ } = 2\sin {2^ \circ } + 4\sin {4^ \circ } + 6\sin {6^ \circ } + ... + 180\sin {180^ \circ }\]
We can write the equation as, \[ \Rightarrow n\sin {n^ \circ } = 2\sin {2^ \circ } + 4\sin {4^ \circ } + 6\sin {6^ \circ } + ... + 88\sin {88^ \circ } + 90\sin {90^ \circ } + 92\sin {92^ \circ } + 94\sin {94^ \circ } + ....178\sin {178^ \circ } + 180\sin {180^ \circ }\]
On substituting the values, we get
\[ = 2\sin {2^ \circ } + 4\sin {4^ \circ } + 6\sin {6^ \circ } + .... + 88\sin {88^ \circ } + 90 \times 1 + 92\sin {88^ \circ } + 94\sin {86^ \circ } + .... + 178\sin {2^ \circ } + 180 \times 0\]
On taking like terms common we get
\[ = 2\sin {2^ \circ } + 178\sin {2^ \circ } + 4\sin {4^ \circ } + 176\sin {4^ \circ } + 6\sin {6^ \circ } + 174\sin {6^ \circ } + ... + 88\sin {88^ \circ } + 92\sin {88^ \circ } + 90\]
On adding the like terms, we get
\[ = (2 + 178)\sin {2^ \circ } + (4 + 176)\sin {4^ \circ } + (6 + 174)\sin {6^ \circ } + ... + (88 + 92)\sin {88^ \circ } + 90\]
So, we have
\[ = 180\sin {2^ \circ } + 180\sin {4^ \circ } + 180\sin {6^ \circ } + ... + 180\sin {88^ \circ } + 90\]
Taking 180 common we get,
\[ = 180(\sin {2^ \circ } + \sin {4^ \circ } + \sin {6^ \circ } + ... + \sin {88^ \circ }) + 90\]
Now Taking 90 common we get
\[ = 90(2\sin {2^ \circ } + 2\sin {4^ \circ } + 2\sin {6^ \circ } + ... + 2\sin {88^ \circ } + 1)\]
Average of 90 terms is given as
\[ \Rightarrow Average = \dfrac{{90(2\sin {2^ \circ } + 2\sin {4^ \circ } + 2\sin {6^ \circ } + ... + 2\sin {{88}^ \circ } + 1)}}{{90}}\]
So, we have
\[ \Rightarrow Average = 2\sin {2^ \circ } + 2\sin {4^ \circ } + 2\sin {6^ \circ } + ... + 2\sin {88^ \circ } + 1\] …. (2)
Using the formula,
\[\cos C - \cos D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right)\]
Taking C as \[n - 1\] and D as \[n + 1\],
\[ \Rightarrow \cos {(n - 1)^ \circ } - \cos {(n + 1)^ \circ } = 2\sin {\left( {\dfrac{{n - 1 + n + 1}}{2}} \right)^ \circ }\sin {\left( {\dfrac{{n - 1 - n - 1}}{2}} \right)^ \circ }\]
On simplification we get,
\[ \Rightarrow \cos {(n - 1)^ \circ } - \cos {(n + 1)^ \circ } = 2\sin {n^ \circ }\sin {1^ \circ }\]
On dividing by sin1\[^ \circ \] we get,
\[ \Rightarrow 2\sin {n^ \circ } = \dfrac{{\cos {{(n - 1)}^ \circ } - \cos {{(n + 1)}^ \circ }}}{{\sin {1^ \circ }}}\] …. (3)
Using equation (3) in equation (2)
\[ \Rightarrow 2\sin {2^ \circ } + 2\sin {4^ \circ } + 2\sin {6^ \circ } + ... + 2\sin {88^ \circ } + 1\]
We have,
\[ = \dfrac{{\cos {1^ \circ } - \cos {3^ \circ }}}{{\sin {1^ \circ }}} + \dfrac{{\cos {3^ \circ } - \cos {5^ \circ }}}{{\sin {1^ \circ }}} + \dfrac{{\cos {5^ \circ } - \cos {7^ \circ }}}{{\sin {1^ \circ }}} + ... + \dfrac{{\cos {{87}^ \circ } - \cos {{89}^ \circ }}}{{\sin {1^ \circ }}} + 1\]
Taking \[\sin {1^ \circ }\] as L.C.M, we get
\[ = \dfrac{{\cos {1^ \circ } - \cos {3^ \circ } + \cos {3^ \circ } - \cos {5^ \circ } + \cos {5^ \circ } - \cos {7^ \circ } + ... + \cos {{87}^ \circ } - \cos {{89}^ \circ }}}{{\sin {1^ \circ }}} + 1\]
On simplification,
\[ = \dfrac{{\cos {1^ \circ } - \cos {{89}^ \circ }}}{{\sin {1^ \circ }}} + 1\]
Using, \[\cos \theta = \sin ({90^ \circ } - \theta )\]
We get, \[\cos {89^ \circ } = \sin {1^ \circ }\]
\[ = \dfrac{{\cos {1^ \circ } - \sin {1^ \circ }}}{{\sin {1^ \circ }}} + 1\]
On simplification, we get
\[ = \cot {1^ \circ } - 1 + 1\]
Hence, we have
\[ = \cot {1^ \circ }\]
Hence, the average of the numbers \[n\sin {n^ \circ },n = 2,4,6,...,180\] is \[\cot {1^ \circ }\].
Note:
You can get trouble in converting the angles. So, here are some formulas for conversion
1) \[\sin (180 - \theta ) = \sin \theta \]
2) \[\cos (180 - \theta ) = - \cos \theta \]
3) \[\sin \theta = \cos (90 - \theta )\]
4) \[\cos \theta = \sin (90 - \theta )\]
First, we will determine the total number of terms. Then, we will put the value of n in the given equation. Then, we will apply trigonometric identities. On simplification, we will get the result.
Complete step by step solution:
Let n be the total number of terms, a be the first term, \[{a_n}\] be the last term and d is the difference between two terms.
Therefore,
\[
a = 2 \\
{a_n} = 180 \\
d = 2 \\
\]
Total number of terms
\[ \Rightarrow n = \dfrac{{{a_n} - a}}{d} + 1\]
On substituting the values, we get
\[ \Rightarrow n = \dfrac{{180 - 2}}{2} + 1\]
On simplification we get
\[ \Rightarrow n = \dfrac{{178}}{2} + 1\]
On division we get
\[ \Rightarrow n = 89 + 1\]
Hence, we have
\[ \Rightarrow n = 90\]
Hence, the total number of terms are 90.
Given,
\[n\sin {n^ \circ };n = 2,4,6,...,180\]
Therefore, \[n\sin {n^ \circ } = 2\sin {2^ \circ } + 4\sin {4^ \circ } + 6\sin {6^ \circ } + ... + 180\sin {180^ \circ }\] …. (1)
We know that,
\[\sin \theta = \sin ({180^ \circ } - \theta )\]
And \[\sin {180^ \circ } = 0\]
\[ \Rightarrow \sin {178^ \circ } = \sin {(180 - 2)^ \circ }\]
So, we have
\[ \Rightarrow \sin {178^ \circ } = \sin {2^ \circ }\]
Similarly,
\[ \Rightarrow \sin {176^ \circ } = \sin {(180 - 4)^ \circ }\]
We have,
\[ \Rightarrow \sin {176^ \circ } = \sin {4^ \circ }\]
Similarly, we have
\[ \Rightarrow \sin {94^ \circ } = \sin {86^ \circ }\]
\[ \Rightarrow \sin {92^ \circ } = \sin {88^ \circ }\]
Putting all these values in equation (1)
\[ \Rightarrow n\sin {n^ \circ } = 2\sin {2^ \circ } + 4\sin {4^ \circ } + 6\sin {6^ \circ } + ... + 180\sin {180^ \circ }\]
We can write the equation as, \[ \Rightarrow n\sin {n^ \circ } = 2\sin {2^ \circ } + 4\sin {4^ \circ } + 6\sin {6^ \circ } + ... + 88\sin {88^ \circ } + 90\sin {90^ \circ } + 92\sin {92^ \circ } + 94\sin {94^ \circ } + ....178\sin {178^ \circ } + 180\sin {180^ \circ }\]
On substituting the values, we get
\[ = 2\sin {2^ \circ } + 4\sin {4^ \circ } + 6\sin {6^ \circ } + .... + 88\sin {88^ \circ } + 90 \times 1 + 92\sin {88^ \circ } + 94\sin {86^ \circ } + .... + 178\sin {2^ \circ } + 180 \times 0\]
On taking like terms common we get
\[ = 2\sin {2^ \circ } + 178\sin {2^ \circ } + 4\sin {4^ \circ } + 176\sin {4^ \circ } + 6\sin {6^ \circ } + 174\sin {6^ \circ } + ... + 88\sin {88^ \circ } + 92\sin {88^ \circ } + 90\]
On adding the like terms, we get
\[ = (2 + 178)\sin {2^ \circ } + (4 + 176)\sin {4^ \circ } + (6 + 174)\sin {6^ \circ } + ... + (88 + 92)\sin {88^ \circ } + 90\]
So, we have
\[ = 180\sin {2^ \circ } + 180\sin {4^ \circ } + 180\sin {6^ \circ } + ... + 180\sin {88^ \circ } + 90\]
Taking 180 common we get,
\[ = 180(\sin {2^ \circ } + \sin {4^ \circ } + \sin {6^ \circ } + ... + \sin {88^ \circ }) + 90\]
Now Taking 90 common we get
\[ = 90(2\sin {2^ \circ } + 2\sin {4^ \circ } + 2\sin {6^ \circ } + ... + 2\sin {88^ \circ } + 1)\]
Average of 90 terms is given as
\[ \Rightarrow Average = \dfrac{{90(2\sin {2^ \circ } + 2\sin {4^ \circ } + 2\sin {6^ \circ } + ... + 2\sin {{88}^ \circ } + 1)}}{{90}}\]
So, we have
\[ \Rightarrow Average = 2\sin {2^ \circ } + 2\sin {4^ \circ } + 2\sin {6^ \circ } + ... + 2\sin {88^ \circ } + 1\] …. (2)
Using the formula,
\[\cos C - \cos D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right)\]
Taking C as \[n - 1\] and D as \[n + 1\],
\[ \Rightarrow \cos {(n - 1)^ \circ } - \cos {(n + 1)^ \circ } = 2\sin {\left( {\dfrac{{n - 1 + n + 1}}{2}} \right)^ \circ }\sin {\left( {\dfrac{{n - 1 - n - 1}}{2}} \right)^ \circ }\]
On simplification we get,
\[ \Rightarrow \cos {(n - 1)^ \circ } - \cos {(n + 1)^ \circ } = 2\sin {n^ \circ }\sin {1^ \circ }\]
On dividing by sin1\[^ \circ \] we get,
\[ \Rightarrow 2\sin {n^ \circ } = \dfrac{{\cos {{(n - 1)}^ \circ } - \cos {{(n + 1)}^ \circ }}}{{\sin {1^ \circ }}}\] …. (3)
Using equation (3) in equation (2)
\[ \Rightarrow 2\sin {2^ \circ } + 2\sin {4^ \circ } + 2\sin {6^ \circ } + ... + 2\sin {88^ \circ } + 1\]
We have,
\[ = \dfrac{{\cos {1^ \circ } - \cos {3^ \circ }}}{{\sin {1^ \circ }}} + \dfrac{{\cos {3^ \circ } - \cos {5^ \circ }}}{{\sin {1^ \circ }}} + \dfrac{{\cos {5^ \circ } - \cos {7^ \circ }}}{{\sin {1^ \circ }}} + ... + \dfrac{{\cos {{87}^ \circ } - \cos {{89}^ \circ }}}{{\sin {1^ \circ }}} + 1\]
Taking \[\sin {1^ \circ }\] as L.C.M, we get
\[ = \dfrac{{\cos {1^ \circ } - \cos {3^ \circ } + \cos {3^ \circ } - \cos {5^ \circ } + \cos {5^ \circ } - \cos {7^ \circ } + ... + \cos {{87}^ \circ } - \cos {{89}^ \circ }}}{{\sin {1^ \circ }}} + 1\]
On simplification,
\[ = \dfrac{{\cos {1^ \circ } - \cos {{89}^ \circ }}}{{\sin {1^ \circ }}} + 1\]
Using, \[\cos \theta = \sin ({90^ \circ } - \theta )\]
We get, \[\cos {89^ \circ } = \sin {1^ \circ }\]
\[ = \dfrac{{\cos {1^ \circ } - \sin {1^ \circ }}}{{\sin {1^ \circ }}} + 1\]
On simplification, we get
\[ = \cot {1^ \circ } - 1 + 1\]
Hence, we have
\[ = \cot {1^ \circ }\]
Hence, the average of the numbers \[n\sin {n^ \circ },n = 2,4,6,...,180\] is \[\cot {1^ \circ }\].
Note:
You can get trouble in converting the angles. So, here are some formulas for conversion
1) \[\sin (180 - \theta ) = \sin \theta \]
2) \[\cos (180 - \theta ) = - \cos \theta \]
3) \[\sin \theta = \cos (90 - \theta )\]
4) \[\cos \theta = \sin (90 - \theta )\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

