
Prove that:
\[tan4x = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 6{{\tan }^2}x + {{\tan }^4}x}}\]
Answer
590.4k+ views
Hint: To solve this problem we are to use a trigonometric result of \[tan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\] to get through the result. First we write \[tan4x = \tan [2(2x)]\] so, that the formula of \[\tan 2x\] can be used, now again we substitute the value of \[tan2x\] , and simplify to find the solution.
Complete step by step Answer:
We are given to prove \[tan4x = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 6{{\tan }^2}x + {{\tan }^4}x}}\]
We have our L.H.S as,
\[tan4x = \tan [2(2x)]\]
Now as per the formula of \[tan2x\] we get, \[tan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\]
Then we can write,
\[ = \dfrac{{2\tan 2x}}{{1 - {{\tan }^2}2x}}\]
Again using the same formula \[tan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\], we get,
\[ = \dfrac{{2\left( {\dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}} \right)}}{{1 - {{\left( {\dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}} \right)}^2}}}\]
On Simplifying, we get,
\[ = \dfrac{{\left( {\dfrac{{4\tan x}}{{1 - {{\tan }^2}x}}} \right)}}{{1 - \dfrac{{4{{\tan }^2}x}}{{{{(1 - {{\tan }^2}x)}^2}}}}}\]
On taking LCM of the denominator, we get,
\[ = \dfrac{{\left( {\dfrac{{4\tan x}}{{1 - {{\tan }^2}x}}} \right)}}{{\dfrac{{{{(1 - {{\tan }^2}x)}^2} - 4{{\tan }^2}x}}{{{{(1 - {{\tan }^2}x)}^2}}}}}\]
Transforming division into multiplication, we get,
\[ = \dfrac{{4\tan x}}{{1 - {{\tan }^2}x}} \times \dfrac{{{{(1 - {{\tan }^2}x)}^2}}}{{{{(1 - {{\tan }^2}x)}^2} - 4{{\tan }^2}x}}\]
On Cancelling out common terms we get,
\[ = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{{{(1 - {{\tan }^2}x)}^2} - 4{{\tan }^2}x}}\]
On Elaborating, we get,
\[ = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 2{{\tan }^2}x + {{\tan }^4}x - 4{{\tan }^2}x}}\]
\[ = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 6{{\tan }^2}x + {{\tan }^4}x}}\](R.H.S)
So, we have, L.H.S = R.H.S.
i.e., \[tan4x = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 6{{\tan }^2}x + {{\tan }^4}x}}\]
Hence, our result is proved.
Note: The result \[tan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\] can be proved in the following way,
Use
\[tanx = \dfrac{{sinx}}{{\cos x}}\],\[sin2x = 2sinxcosx\] and \[cos2x = co{s^2}x - si{n^2}x\], for the right hand side expression
Explanation:
\[\dfrac{{2tanx}}{{1 - {{\tan }^2}x}}\]
On substituting the value of tanx we get,
\[ = \dfrac{{2\left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{1 - {{\left( {\dfrac{{\sin x}}{{\cos x}}} \right)}^2}}}\]
On simplification we get,
\[ = \dfrac{{\dfrac{{2\sin x}}{{\cos x}}}}{{1 - \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}}}}\]
On taking LCM in the denominator we get,
\[ = \dfrac{{\dfrac{{2\sin x}}{{\cos x}}}}{{\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\cos }^2}x}}}}\]
On further simplification we get,
\[ = \dfrac{{2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}\]
On using \[sin2x = 2sinxcosx\] and \[cos2x = co{s^2}x - si{n^2}x\], we get,
\[ = \dfrac{{\sin 2x}}{{\cos 2x}}\]
On using, \[tanx = \dfrac{{sinx}}{{\cos x}}\], we get,
\[ = \tan 2x\]
Hence, \[tan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\]
Complete step by step Answer:
We are given to prove \[tan4x = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 6{{\tan }^2}x + {{\tan }^4}x}}\]
We have our L.H.S as,
\[tan4x = \tan [2(2x)]\]
Now as per the formula of \[tan2x\] we get, \[tan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\]
Then we can write,
\[ = \dfrac{{2\tan 2x}}{{1 - {{\tan }^2}2x}}\]
Again using the same formula \[tan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\], we get,
\[ = \dfrac{{2\left( {\dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}} \right)}}{{1 - {{\left( {\dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}} \right)}^2}}}\]
On Simplifying, we get,
\[ = \dfrac{{\left( {\dfrac{{4\tan x}}{{1 - {{\tan }^2}x}}} \right)}}{{1 - \dfrac{{4{{\tan }^2}x}}{{{{(1 - {{\tan }^2}x)}^2}}}}}\]
On taking LCM of the denominator, we get,
\[ = \dfrac{{\left( {\dfrac{{4\tan x}}{{1 - {{\tan }^2}x}}} \right)}}{{\dfrac{{{{(1 - {{\tan }^2}x)}^2} - 4{{\tan }^2}x}}{{{{(1 - {{\tan }^2}x)}^2}}}}}\]
Transforming division into multiplication, we get,
\[ = \dfrac{{4\tan x}}{{1 - {{\tan }^2}x}} \times \dfrac{{{{(1 - {{\tan }^2}x)}^2}}}{{{{(1 - {{\tan }^2}x)}^2} - 4{{\tan }^2}x}}\]
On Cancelling out common terms we get,
\[ = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{{{(1 - {{\tan }^2}x)}^2} - 4{{\tan }^2}x}}\]
On Elaborating, we get,
\[ = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 2{{\tan }^2}x + {{\tan }^4}x - 4{{\tan }^2}x}}\]
\[ = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 6{{\tan }^2}x + {{\tan }^4}x}}\](R.H.S)
So, we have, L.H.S = R.H.S.
i.e., \[tan4x = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 6{{\tan }^2}x + {{\tan }^4}x}}\]
Hence, our result is proved.
Note: The result \[tan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\] can be proved in the following way,
Use
\[tanx = \dfrac{{sinx}}{{\cos x}}\],\[sin2x = 2sinxcosx\] and \[cos2x = co{s^2}x - si{n^2}x\], for the right hand side expression
Explanation:
\[\dfrac{{2tanx}}{{1 - {{\tan }^2}x}}\]
On substituting the value of tanx we get,
\[ = \dfrac{{2\left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{1 - {{\left( {\dfrac{{\sin x}}{{\cos x}}} \right)}^2}}}\]
On simplification we get,
\[ = \dfrac{{\dfrac{{2\sin x}}{{\cos x}}}}{{1 - \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}}}}\]
On taking LCM in the denominator we get,
\[ = \dfrac{{\dfrac{{2\sin x}}{{\cos x}}}}{{\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\cos }^2}x}}}}\]
On further simplification we get,
\[ = \dfrac{{2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}\]
On using \[sin2x = 2sinxcosx\] and \[cos2x = co{s^2}x - si{n^2}x\], we get,
\[ = \dfrac{{\sin 2x}}{{\cos 2x}}\]
On using, \[tanx = \dfrac{{sinx}}{{\cos x}}\], we get,
\[ = \tan 2x\]
Hence, \[tan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

