
Prove that tan \[\left( {x - \left. y \right)} \right.\]\[ = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\]
Answer
519k+ views
Hint: In trigonometry when it comes to a right-angle triangle; there are many formulas in trigonometry but there are few most important basic formulas . The Cos theta or cos θ is the ratio of the adjacent side to the hypotenuse, where θ is one of the acute angles. \[Cos\theta = \dfrac{{Adjacent}}{{Hypotenuse}}\]. While we can find sine value for any angle, there are some angles that are more frequently used in trigonometry.
Complete step-by-step solution:
We know, tan \[\theta \] \[\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\]
tan \[\left( {x - \left. y \right)} \right.\] \[ = \dfrac{{\sin \left( x \right. - \left. y \right)}}{{\cos \left( {x - \left. y \right)} \right.}}\]
Now using the formulae,
\[
\sin \left( {x - y} \right) = \sin x\cos y - \sin y\cos x \\
\cos \left( {x - y} \right) = \cos x\cos y + \sin x\sin y \\
\tan \left( {x - y} \right) = \dfrac{{\sin x\cos y - \sin y\cos x}}{{\cos x\cos y + \sin x\sin y}}\]
Dividing both numerator both denominator by cos x cos y,
\[\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\] proved.
Note: The tangent is defined as the ratio of the opposite side to the adjacent side. The unit circle definition is $\tan\left(\theta\right)=\dfrac{y}{x}$ or $\tan\left(\theta\right)=\dfrac{\sin\left(\theta\right)}{\cos\left(\theta\right)}$ in right triangle trigonometry (for acute angles only), The tangent function is negative whenever sine or cosine, but not both, are negative: the second and fourth quadrants.
Complete step-by-step solution:
We know, tan \[\theta \] \[\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\]
tan \[\left( {x - \left. y \right)} \right.\] \[ = \dfrac{{\sin \left( x \right. - \left. y \right)}}{{\cos \left( {x - \left. y \right)} \right.}}\]
Now using the formulae,
\[
\sin \left( {x - y} \right) = \sin x\cos y - \sin y\cos x \\
\cos \left( {x - y} \right) = \cos x\cos y + \sin x\sin y \\
\tan \left( {x - y} \right) = \dfrac{{\sin x\cos y - \sin y\cos x}}{{\cos x\cos y + \sin x\sin y}}\]
Dividing both numerator both denominator by cos x cos y,
\[\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\] proved.
Note: The tangent is defined as the ratio of the opposite side to the adjacent side. The unit circle definition is $\tan\left(\theta\right)=\dfrac{y}{x}$ or $\tan\left(\theta\right)=\dfrac{\sin\left(\theta\right)}{\cos\left(\theta\right)}$ in right triangle trigonometry (for acute angles only), The tangent function is negative whenever sine or cosine, but not both, are negative: the second and fourth quadrants.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

