Prove that tan \[\left( {x - \left. y \right)} \right.\]\[ = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\]
Answer
Verified
402.3k+ views
Hint: In trigonometry when it comes to a right-angle triangle; there are many formulas in trigonometry but there are few most important basic formulas . The Cos theta or cos θ is the ratio of the adjacent side to the hypotenuse, where θ is one of the acute angles. \[Cos\theta = \dfrac{{Adjacent}}{{Hypotenuse}}\]. While we can find sine value for any angle, there are some angles that are more frequently used in trigonometry.
Complete step-by-step solution:
We know, tan \[\theta \] \[\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\]
tan \[\left( {x - \left. y \right)} \right.\] \[ = \dfrac{{\sin \left( x \right. - \left. y \right)}}{{\cos \left( {x - \left. y \right)} \right.}}\]
Now using the formulae,
\[
\sin \left( {x - y} \right) = \sin x\cos y - \sin y\cos x \\
\cos \left( {x - y} \right) = \cos x\cos y + \sin x\sin y \\
\tan \left( {x - y} \right) = \dfrac{{\sin x\cos y - \sin y\cos x}}{{\cos x\cos y + \sin x\sin y}}\]
Dividing both numerator both denominator by cos x cos y,
\[\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\] proved.
Note: The tangent is defined as the ratio of the opposite side to the adjacent side. The unit circle definition is $\tan\left(\theta\right)=\dfrac{y}{x}$ or $\tan\left(\theta\right)=\dfrac{\sin\left(\theta\right)}{\cos\left(\theta\right)}$ in right triangle trigonometry (for acute angles only), The tangent function is negative whenever sine or cosine, but not both, are negative: the second and fourth quadrants.
Complete step-by-step solution:
We know, tan \[\theta \] \[\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\]
tan \[\left( {x - \left. y \right)} \right.\] \[ = \dfrac{{\sin \left( x \right. - \left. y \right)}}{{\cos \left( {x - \left. y \right)} \right.}}\]
Now using the formulae,
\[
\sin \left( {x - y} \right) = \sin x\cos y - \sin y\cos x \\
\cos \left( {x - y} \right) = \cos x\cos y + \sin x\sin y \\
\tan \left( {x - y} \right) = \dfrac{{\sin x\cos y - \sin y\cos x}}{{\cos x\cos y + \sin x\sin y}}\]
Dividing both numerator both denominator by cos x cos y,
\[\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\] proved.
Note: The tangent is defined as the ratio of the opposite side to the adjacent side. The unit circle definition is $\tan\left(\theta\right)=\dfrac{y}{x}$ or $\tan\left(\theta\right)=\dfrac{\sin\left(\theta\right)}{\cos\left(\theta\right)}$ in right triangle trigonometry (for acute angles only), The tangent function is negative whenever sine or cosine, but not both, are negative: the second and fourth quadrants.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE