Prove that tan \[\left( {x - \left. y \right)} \right.\]\[ = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\]
Answer
279.3k+ views
Hint: In trigonometry when it comes to a right-angle triangle; there are many formulas in trigonometry but there are few most important basic formulas . The Cos theta or cos θ is the ratio of the adjacent side to the hypotenuse, where θ is one of the acute angles. \[Cos\theta = \dfrac{{Adjacent}}{{Hypotenuse}}\]. While we can find sine value for any angle, there are some angles that are more frequently used in trigonometry.
Complete step-by-step solution:
We know, tan \[\theta \] \[\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\]
tan \[\left( {x - \left. y \right)} \right.\] \[ = \dfrac{{\sin \left( x \right. - \left. y \right)}}{{\cos \left( {x - \left. y \right)} \right.}}\]
Now using the formulae,
\[
\sin \left( {x - y} \right) = \sin x\cos y - \sin y\cos x \\
\cos \left( {x - y} \right) = \cos x\cos y + \sin x\sin y \\
\tan \left( {x - y} \right) = \dfrac{{\sin x\cos y - \sin y\cos x}}{{\cos x\cos y + \sin x\sin y}}\]
Dividing both numerator both denominator by cos x cos y,
\[\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\] proved.
Note: The tangent is defined as the ratio of the opposite side to the adjacent side. The unit circle definition is $\tan\left(\theta\right)=\dfrac{y}{x}$ or $\tan\left(\theta\right)=\dfrac{\sin\left(\theta\right)}{\cos\left(\theta\right)}$ in right triangle trigonometry (for acute angles only), The tangent function is negative whenever sine or cosine, but not both, are negative: the second and fourth quadrants.
Complete step-by-step solution:
We know, tan \[\theta \] \[\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\]
tan \[\left( {x - \left. y \right)} \right.\] \[ = \dfrac{{\sin \left( x \right. - \left. y \right)}}{{\cos \left( {x - \left. y \right)} \right.}}\]
Now using the formulae,
\[
\sin \left( {x - y} \right) = \sin x\cos y - \sin y\cos x \\
\cos \left( {x - y} \right) = \cos x\cos y + \sin x\sin y \\
\tan \left( {x - y} \right) = \dfrac{{\sin x\cos y - \sin y\cos x}}{{\cos x\cos y + \sin x\sin y}}\]
Dividing both numerator both denominator by cos x cos y,
\[\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\] proved.
Note: The tangent is defined as the ratio of the opposite side to the adjacent side. The unit circle definition is $\tan\left(\theta\right)=\dfrac{y}{x}$ or $\tan\left(\theta\right)=\dfrac{\sin\left(\theta\right)}{\cos\left(\theta\right)}$ in right triangle trigonometry (for acute angles only), The tangent function is negative whenever sine or cosine, but not both, are negative: the second and fourth quadrants.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
