
Prove that $\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\tan x+\sec x$
Answer
612.9k+ views
Hint: In this question, the addition of trigonometric formula for tangent tells us that
$\tan \left( A+B \right)$ is $\dfrac{\tan A+\tan B}{1-\tan A\tan B}$. Multiplying the numerator and denominator of the fraction by the conjugate of the denominator is known as Rationalization. Rationalize the denominator and simplify.
Complete step-by-step answer:
We know that $\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$
$\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\dfrac{\tan \dfrac{\pi }{4}+\tan \dfrac{x}{2}}{1-\tan \dfrac{\pi }{4}\tan \dfrac{x}{2}}$
Since the trigonometric value of $\tan \left( \dfrac{\pi }{4} \right)$ is 1 and Replace the first term in numerator and denominator by $\tan \dfrac{\pi }{4}=1$ on the right with its ratio-identity equivalent. Rewrite the expression as
$\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\dfrac{1+\tan \dfrac{x}{2}}{1-\tan \dfrac{x}{2}}=\dfrac{1+\left( \dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)}{1-\left( \dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)}=\dfrac{\cos \dfrac{x}{2}+\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}$
Rationalize the denominator that means multiply the numerator and denominator of the fraction on the left by the conjugate of the denominator.
$\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\dfrac{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}\times \dfrac{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}$
Multiply the fractions together, keeping the parentheses in the denominator.
$\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\dfrac{{{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}}{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}$
Applying the formulas ${{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ and the two denominators multiplied together are the difference of two squares that is $(a-b)(a+b)={{a}^{2}}-{{b}^{2}}$ , we get
\[\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\dfrac{{{\cos }^{2}}\left( \dfrac{x}{2} \right)+{{\sin }^{2}}\left( \dfrac{x}{2} \right)+2\cos \left( \dfrac{x}{2} \right)\sin \left( \dfrac{x}{2} \right)}{{{\cos }^{2}}\left( \dfrac{x}{2} \right)-{{\sin }^{2}}\left( \dfrac{x}{2} \right)}\]
Applying the trigonometric identity and sine and cosine double angle formulas, we get
\[\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\dfrac{1+\sin x}{\cos x}\]
Rewrite the fraction on the right as a sum of two fractions, carefully arranging the terms.
\[\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}\]
Replace the first fraction on the right with its ratio-identity equivalent. Rewrite the expression as two terms.
\[\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\sec x+\tan x\]
This is the desired result.
Note: Alternatively, the question is solved as follows
\[\sec x=\dfrac{1}{\cos x}=\dfrac{1+{{\tan }^{2}}\dfrac{x}{2}}{1-{{\tan }^{2}}\dfrac{x}{2}}~......(1)\] (By using cosine double angled formula)
$\tan x=\dfrac{2\tan \dfrac{x}{2}}{1-{{\tan }^{2}}\dfrac{x}{2}}........(2)$ (By using tangent double angled formula)
Adding equation (1) and equation (2), we get
$\sec x+\tan x=\dfrac{\left( 1+2\tan \dfrac{x}{2}+{{\tan }^{2}}\dfrac{x}{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}=\dfrac{{{\left( 1+\tan \dfrac{x}{2} \right)}^{2}}}{\left( 1+\tan \dfrac{x}{2} \right)\left( 1-\tan \dfrac{x}{2} \right)}=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$
$\tan \left( A+B \right)$ is $\dfrac{\tan A+\tan B}{1-\tan A\tan B}$. Multiplying the numerator and denominator of the fraction by the conjugate of the denominator is known as Rationalization. Rationalize the denominator and simplify.
Complete step-by-step answer:
We know that $\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$
$\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\dfrac{\tan \dfrac{\pi }{4}+\tan \dfrac{x}{2}}{1-\tan \dfrac{\pi }{4}\tan \dfrac{x}{2}}$
Since the trigonometric value of $\tan \left( \dfrac{\pi }{4} \right)$ is 1 and Replace the first term in numerator and denominator by $\tan \dfrac{\pi }{4}=1$ on the right with its ratio-identity equivalent. Rewrite the expression as
$\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\dfrac{1+\tan \dfrac{x}{2}}{1-\tan \dfrac{x}{2}}=\dfrac{1+\left( \dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)}{1-\left( \dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)}=\dfrac{\cos \dfrac{x}{2}+\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}$
Rationalize the denominator that means multiply the numerator and denominator of the fraction on the left by the conjugate of the denominator.
$\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\dfrac{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}\times \dfrac{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}$
Multiply the fractions together, keeping the parentheses in the denominator.
$\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\dfrac{{{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}}{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}$
Applying the formulas ${{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ and the two denominators multiplied together are the difference of two squares that is $(a-b)(a+b)={{a}^{2}}-{{b}^{2}}$ , we get
\[\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\dfrac{{{\cos }^{2}}\left( \dfrac{x}{2} \right)+{{\sin }^{2}}\left( \dfrac{x}{2} \right)+2\cos \left( \dfrac{x}{2} \right)\sin \left( \dfrac{x}{2} \right)}{{{\cos }^{2}}\left( \dfrac{x}{2} \right)-{{\sin }^{2}}\left( \dfrac{x}{2} \right)}\]
Applying the trigonometric identity and sine and cosine double angle formulas, we get
\[\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\dfrac{1+\sin x}{\cos x}\]
Rewrite the fraction on the right as a sum of two fractions, carefully arranging the terms.
\[\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}\]
Replace the first fraction on the right with its ratio-identity equivalent. Rewrite the expression as two terms.
\[\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)=\sec x+\tan x\]
This is the desired result.
Note: Alternatively, the question is solved as follows
\[\sec x=\dfrac{1}{\cos x}=\dfrac{1+{{\tan }^{2}}\dfrac{x}{2}}{1-{{\tan }^{2}}\dfrac{x}{2}}~......(1)\] (By using cosine double angled formula)
$\tan x=\dfrac{2\tan \dfrac{x}{2}}{1-{{\tan }^{2}}\dfrac{x}{2}}........(2)$ (By using tangent double angled formula)
Adding equation (1) and equation (2), we get
$\sec x+\tan x=\dfrac{\left( 1+2\tan \dfrac{x}{2}+{{\tan }^{2}}\dfrac{x}{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}=\dfrac{{{\left( 1+\tan \dfrac{x}{2} \right)}^{2}}}{\left( 1+\tan \dfrac{x}{2} \right)\left( 1-\tan \dfrac{x}{2} \right)}=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

