
Prove that: ${{\tan }^{2}}\theta -{{\sin }^{2}}\theta ={{\tan }^{2}}\theta \times {{\sin }^{2}}\theta $
Answer
607.8k+ views
Hint: Simplify the terms given in the LHS of the equation by writing $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and then by using$\sec \theta =\dfrac{1}{\cos \theta }$. After that, use ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$ to simplify the LHS and get LHS equal to RHS.
Complete step-by-step answer:
We have to just simplify the LHS to get the expression given in RHS.
Taking, $LHS={{\tan }^{2}}\theta -{{\sin }^{2}}\theta $
Using \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\] in the above expression we get-
$LHS={{\left( \dfrac{\sin \theta }{\cos \theta } \right)}^{2}}-{{\sin }^{2}}\theta $
$LHS=\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }-{{\sin }^{2}}\theta $
$LHS={{\sin }^{2}}\theta \left[ \dfrac{1}{{{\cos }^{2}}\theta }-1 \right]$
Taking \[{{\sin }^{2}}\theta \] (common from both terms).
Since, we know that $\sec \theta =\dfrac{1}{\cos \theta }$
That means, ${{\sec }^{2}}\theta =\dfrac{1}{{{\cos }^{2}}\theta }\left( on\,squaring\,both\,sides \right)$.
Using, $\dfrac{1}{{{\cos }^{2}}\theta }={{\sec }^{2}}\theta $, in the above expression we get-
$LHS={{\sin }^{2}}\theta \left\{ {{\sec }^{2}}\theta -1 \right\}$
Now, as we know that, $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $
i.e. ${{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1$
using, $\left( {{\sec }^{2}}\theta -1 \right)={{\tan }^{2}}\theta $ in the above expression we get-
$\begin{align}
& LHS=\left( {{\sin }^{2}}\theta \right)\left( {{\tan }^{2}}\theta \right) \\
& LHS={{\tan }^{2}}\theta \times {{\sin }^{2}}\theta \\
& LHS=RHS \\
\end{align}$
Hence, ${{\tan }^{2}}\theta -{{\sin }^{2}}\theta ={{\tan }^{2}}\theta \times {{\sin }^{2}}\theta (proved)$
Note: Students can also solve this by this method given as-
We are given, $LHS={{\tan }^{2}}\theta -{{\sin }^{2}}\theta $
\[\begin{align}
& LHS={{\left( \dfrac{\sin \theta }{\cos \theta } \right)}^{2}}-{{\sin }^{2}}\theta \\
& LHS=\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }-{{\sin }^{2}}\theta \\
& LHS=\dfrac{{{\sin }^{2}}\theta -\left( {{\sin }^{2}}\theta \right)\left( {{\cos }^{2}}\theta \right)}{{{\cos }^{2}}\theta } \\
& LHS=\dfrac{{{\sin }^{2}}\theta \times \left( 1-{{\cos }^{2}}\theta \right)}{{{\cos }^{2}}\theta } \\
& LHS={{\sin }^{2}}\theta \left( \dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }
\right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ \because {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\,i\,.e.\,1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta \right] \\
& LHS={{\sin }^{2}}\theta \left( \dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)\, \\
& LHS={{\sin }^{2}}\theta \times {{\left( \tan \theta \right)}^{2}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ \because \dfrac{\sin \theta }{\cos \theta }=\tan \theta \right] \\
& LHS={{\sin }^{2}}\theta \times {{\tan }^{2}}\theta \\
& \\
\end{align}\]
Hence, LHS=RHS
Therefore, ${{\tan }^{2}}\theta -{{\sin }^{2}}\theta ={{\tan }^{2}}\theta \times {{\sin }^{2}}\theta \,\,(proved)$
Complete step-by-step answer:
We have to just simplify the LHS to get the expression given in RHS.
Taking, $LHS={{\tan }^{2}}\theta -{{\sin }^{2}}\theta $
Using \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\] in the above expression we get-
$LHS={{\left( \dfrac{\sin \theta }{\cos \theta } \right)}^{2}}-{{\sin }^{2}}\theta $
$LHS=\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }-{{\sin }^{2}}\theta $
$LHS={{\sin }^{2}}\theta \left[ \dfrac{1}{{{\cos }^{2}}\theta }-1 \right]$
Taking \[{{\sin }^{2}}\theta \] (common from both terms).
Since, we know that $\sec \theta =\dfrac{1}{\cos \theta }$
That means, ${{\sec }^{2}}\theta =\dfrac{1}{{{\cos }^{2}}\theta }\left( on\,squaring\,both\,sides \right)$.
Using, $\dfrac{1}{{{\cos }^{2}}\theta }={{\sec }^{2}}\theta $, in the above expression we get-
$LHS={{\sin }^{2}}\theta \left\{ {{\sec }^{2}}\theta -1 \right\}$
Now, as we know that, $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $
i.e. ${{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1$
using, $\left( {{\sec }^{2}}\theta -1 \right)={{\tan }^{2}}\theta $ in the above expression we get-
$\begin{align}
& LHS=\left( {{\sin }^{2}}\theta \right)\left( {{\tan }^{2}}\theta \right) \\
& LHS={{\tan }^{2}}\theta \times {{\sin }^{2}}\theta \\
& LHS=RHS \\
\end{align}$
Hence, ${{\tan }^{2}}\theta -{{\sin }^{2}}\theta ={{\tan }^{2}}\theta \times {{\sin }^{2}}\theta (proved)$
Note: Students can also solve this by this method given as-
We are given, $LHS={{\tan }^{2}}\theta -{{\sin }^{2}}\theta $
\[\begin{align}
& LHS={{\left( \dfrac{\sin \theta }{\cos \theta } \right)}^{2}}-{{\sin }^{2}}\theta \\
& LHS=\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }-{{\sin }^{2}}\theta \\
& LHS=\dfrac{{{\sin }^{2}}\theta -\left( {{\sin }^{2}}\theta \right)\left( {{\cos }^{2}}\theta \right)}{{{\cos }^{2}}\theta } \\
& LHS=\dfrac{{{\sin }^{2}}\theta \times \left( 1-{{\cos }^{2}}\theta \right)}{{{\cos }^{2}}\theta } \\
& LHS={{\sin }^{2}}\theta \left( \dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }
\right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ \because {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\,i\,.e.\,1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta \right] \\
& LHS={{\sin }^{2}}\theta \left( \dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)\, \\
& LHS={{\sin }^{2}}\theta \times {{\left( \tan \theta \right)}^{2}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ \because \dfrac{\sin \theta }{\cos \theta }=\tan \theta \right] \\
& LHS={{\sin }^{2}}\theta \times {{\tan }^{2}}\theta \\
& \\
\end{align}\]
Hence, LHS=RHS
Therefore, ${{\tan }^{2}}\theta -{{\sin }^{2}}\theta ={{\tan }^{2}}\theta \times {{\sin }^{2}}\theta \,\,(proved)$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which Country is Called "The Land of Festivals"?

What is Contraception List its four different methods class 10 biology CBSE

