
Prove that, ${{\tan }^{-1}}\left( \dfrac{1}{4} \right)+{{\tan }^{-1}}\left( \dfrac{2}{9} \right)=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{3}{5} \right)$
Answer
511.8k+ views
Hint: In this question we have been given with a trigonometric expression for which we have to prove that the left-hand side is equal to the right-hand side. We will solve this question by considering the left-hand side and using the formula ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ and ${{\tan }^{-1}}x=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} \right)$ to simplify the terms and get the required solution.
Complete step by step answer:
We have the expression given to us as:
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{4} \right)+{{\tan }^{-1}}\left( \dfrac{2}{9} \right)=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{3}{5} \right)$
Consider the left-hand side of the expression, we get:
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{4} \right)+{{\tan }^{-1}}\left( \dfrac{2}{9} \right)$
Now, we know the formula ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ therefore, on substituting the values, we get:
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{1}{4}+\dfrac{2}{9}}{1-\dfrac{1}{4}\times \dfrac{2}{9}} \right)$
On multiplying the terms, we get:
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{1}{4}+\dfrac{2}{9}}{1-\dfrac{2}{36}} \right)$
On taking the lowest common multiple, we get:
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{9+8}{36}}{\dfrac{36-2}{36}} \right)\]
On adding the terms, we get:
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{17}{36}}{\dfrac{34}{36}} \right)\]
Since both the denominators are the same, we cancel an write it as:
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{17}{34} \right)\]
On simplifying the fraction, we get:
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2} \right)\]
Now we know the formula ${{\tan }^{-1}}x=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} \right)$ therefore, on substituting the values, we get:
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-{{\left( \dfrac{1}{2} \right)}^{2}}}{1+{{\left( \dfrac{1}{2} \right)}^{2}}} \right)$
On squaring, we get:
$\Rightarrow \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-\dfrac{1}{4}}{1+\dfrac{1}{4}} \right)$
On taking the lowest common multiple, we get:
$\Rightarrow \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{\dfrac{4-1}{4}}{\dfrac{4+1}{4}} \right)$
On simplifying the terms, we get:
$\Rightarrow \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{\dfrac{3}{4}}{\dfrac{5}{4}} \right)$
On cancelling the denominators, we get:
$\Rightarrow \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{3}{5} \right)$, which is the right-hand side, hence proved.
Note: The various trigonometric identities and formulae should be remembered while doing these types of sums. The various Pythagorean identities should also be remembered while doing these types of questions. It is to be remembered that to add two or more fractions, the denominator of both them should be the same, if the denominator is not same, the lowest common multiple known as L.C.M should be taken. If there is nothing to simplify, then only you should use the double angle formulas to expand the given equation.
Complete step by step answer:
We have the expression given to us as:
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{4} \right)+{{\tan }^{-1}}\left( \dfrac{2}{9} \right)=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{3}{5} \right)$
Consider the left-hand side of the expression, we get:
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{4} \right)+{{\tan }^{-1}}\left( \dfrac{2}{9} \right)$
Now, we know the formula ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ therefore, on substituting the values, we get:
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{1}{4}+\dfrac{2}{9}}{1-\dfrac{1}{4}\times \dfrac{2}{9}} \right)$
On multiplying the terms, we get:
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{1}{4}+\dfrac{2}{9}}{1-\dfrac{2}{36}} \right)$
On taking the lowest common multiple, we get:
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{9+8}{36}}{\dfrac{36-2}{36}} \right)\]
On adding the terms, we get:
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{17}{36}}{\dfrac{34}{36}} \right)\]
Since both the denominators are the same, we cancel an write it as:
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{17}{34} \right)\]
On simplifying the fraction, we get:
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2} \right)\]
Now we know the formula ${{\tan }^{-1}}x=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} \right)$ therefore, on substituting the values, we get:
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-{{\left( \dfrac{1}{2} \right)}^{2}}}{1+{{\left( \dfrac{1}{2} \right)}^{2}}} \right)$
On squaring, we get:
$\Rightarrow \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-\dfrac{1}{4}}{1+\dfrac{1}{4}} \right)$
On taking the lowest common multiple, we get:
$\Rightarrow \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{\dfrac{4-1}{4}}{\dfrac{4+1}{4}} \right)$
On simplifying the terms, we get:
$\Rightarrow \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{\dfrac{3}{4}}{\dfrac{5}{4}} \right)$
On cancelling the denominators, we get:
$\Rightarrow \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{3}{5} \right)$, which is the right-hand side, hence proved.
Note: The various trigonometric identities and formulae should be remembered while doing these types of sums. The various Pythagorean identities should also be remembered while doing these types of questions. It is to be remembered that to add two or more fractions, the denominator of both them should be the same, if the denominator is not same, the lowest common multiple known as L.C.M should be taken. If there is nothing to simplify, then only you should use the double angle formulas to expand the given equation.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

