
Prove that $ \sum\limits_{r=1}^{k}{{{\left( -3 \right)}^{r}}{}^{3n}{{C}_{2r-1}}}=0 $ where $ k=\dfrac{3n}{2} $ and $ n $ is an even integer.\[\]
Answer
558.6k+ views
Hint: We take $ n=2m $ and expand the give summation $ S=\sum\limits_{r=1}^{k}{{{\left( -3 \right)}^{r}}{}^{3n}{{C}_{2r-1}}} $ at left hand side. We subtract corresponding sides of $ {{\left( 1-x \right)}^{6m}} $ from $ {{\left( 1-x \right)}^{6m}} $ , put $ {{x}^{2}}=y $ in the subtracted equation and the put $ y=-3 $ to get summation $ S $ . We find at the left hand side two complex numbers $ \left( 1+i\sqrt{3} \right),\left( 1-i\sqrt{3} \right) $ which we convert $ z=x+iy $ to $ \left( r,\theta \right) $ from using $ z=r\cos \theta +ir\sin \theta $ where $ r=\sqrt{{{x}^{2}}+{{y}^{2}}},\theta ={{\tan }^{-1}}\left( \dfrac{y}{x} \right) $ . We add both the complex numbers in $ \left( r,\theta \right) $ from to get $ S=0 $ . \[\]
Complete step by step answer:
We know that we can use the binomial theorem (or binomial expansion) to describe the algebraic expansion of the power of binomials. If $ x,y $ are the two terms of binomial with some positive integral power $ n $ then the binomial expansion is given by;
\[{{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{0}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{0}}+...+{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}\]
The above expression is called binomial formula or binomial identity. We know that we can convert any complex number $ z=x+iy $ into $ \left( r,\theta \right) $ form as ;\[z=r\cos \theta +ir\sin \theta \text{ where }r=\sqrt{{{x}^{2}}+{{y}^{2}}},\theta ={{\tan }^{-1}}\left( \dfrac{y}{x} \right)\]
The complex number $ \overline{z}=z-iy $ is called conjugate of $ z=x+iy $ whose $ \left( r,\theta \right) $ form is;
\[z=r\cos \theta -ir\sin \theta \text{ }\]
We are given in the question to prove
\[\sum\limits_{r=1}^{k}{{{\left( -3 \right)}^{r}}{}^{3n}{{C}_{2r-1}}}=0\]
Let us denote the summation on the left hand side as $ S $ . We have;
\[S=\sum\limits_{r=1}^{k}{{{\left( -3 \right)}^{r}}{}^{3n}{{C}_{2r-1}}}\]
We put $ n=2m $ for some integer $ m $ since we are given $ n $ is even. Then we have $ k=\dfrac{3\times 2m}{2}=3m $ . We put $ n=3m,k=2m $ in the above step and expand the summation to have;
\[\begin{align}
& \Rightarrow S=\sum\limits_{r=1}^{2m}{{{\left( -3 \right)}^{r}}{}^{6m}{{C}_{2r-1}}} \\
& \Rightarrow S={{\left( -3 \right)}^{0}}{}^{6m}{{C}_{0}}+\left( -3 \right){}^{6m}{{C}_{3}}+{{\left( -3 \right)}^{2}}{}^{6m}{{C}_{5}}+...+{{\left( -3 \right)}^{3m-1}}{}^{6m}{{C}_{3m-1}}.....\left( 1 \right) \\
\end{align}\]
We put $ x=1,y=x,n=6m $ in the binomial expansion to have.
\[{{\left( 1+x \right)}^{6m}}={}^{6m}{{C}_{0}}+{}^{6m}{{C}_{1}}x+{}^{6m}{{C}_{2}}{{x}^{2}}+...{}^{6m}{{C}_{6m-1}}{{x}^{6m-1}}+{}^{6m}{{C}_{6m}}{{x}^{6m}}.........\left( 2 \right)\]
We put $ x=1,y=-x,n=6m $ in the binomial expansion to have;
\[{{\left( 1-x \right)}^{6m}}={}^{6m}{{C}_{0}}+{}^{6m}{{C}_{1}}\left( -x \right)+{}^{6m}{{C}_{2}}{{\left( -x \right)}^{2}}+...{}^{6m-1}{{C}_{6m-1}}{{\left( -x \right)}^{6m-1}}+{}^{6m}{{C}_{6m}}{{\left( -x \right)}^{6m}}.........\left( 3 \right)\]
We subtract equation (3) from equation (2) and see that all the terms with even power of $ x $ will vanish. We have;
\[\begin{align}
& {{\left( 1+x \right)}^{6m}}-{{\left( 1-x \right)}^{6m}}={}^{6}{{C}_{1}}\left( x-\left( -x \right) \right)+{}^{6}{{C}_{3}}\left( {{x}^{3}}-{{\left( -x \right)}^{3}} \right)+...+{}^{6m}{{C}_{6m-1}}\left( {{x}^{6m-1}}-{{\left( -x \right)}^{6m-1}} \right) \\
& \Rightarrow {{\left( 1+x \right)}^{6m}}-{{\left( 1-x \right)}^{6m}}={}^{6}{{C}_{1}}\cdot 2x+2{{x}^{3}}{}^{6}{{C}_{3}}\cdot 2{{x}^{3}}+...+{}^{6m}{{C}_{6m-1}}\cdot 2{{x}^{6m-1}} \\
\end{align}\]
We divide both sides of the above equation by $ 2x $ to have;
\[\begin{align}
& \Rightarrow \dfrac{{{\left( 1+x \right)}^{6m}}-{{\left( 1-x \right)}^{6m}}}{2x}={}^{6}{{C}_{1}}+{}^{6}{{C}_{3}}{{x}^{2}}+...+{}^{6m}{{C}_{6m-1}}{{x}^{6m-2}} \\
& \Rightarrow \dfrac{{{\left( 1+x \right)}^{6m}}-{{\left( 1-x \right)}^{6m}}}{2x}={}^{6}{{C}_{1}}+{}^{6}{{C}_{3}}{{x}^{2}}+...+{}^{6m}{{C}_{6m-1}}{{\left( {{x}^{2}} \right)}^{3m-1}} \\
\end{align}\]
We put $ {{x}^{2}}=y $ in the above step to have;
\[\Rightarrow \dfrac{{{\left( 1+\sqrt{y} \right)}^{6m}}-{{\left( 1-\sqrt{y} \right)}^{6m}}}{2\sqrt{y}}={}^{6}{{C}_{1}}+{}^{6}{{C}_{3}}\cdot y+...+{}^{6m}{{C}_{6m-1}}{{\left( y \right)}^{3m-1}}......\left( 4 \right)\]
We observe the right hand above the equation and compare it with the right hand side of equation (1). We see that if we take $ y=-3 $ then the right hand sides of equation (1) and (4) will be the same. So we have
\[\Rightarrow \dfrac{{{\left( 1+\sqrt{-3} \right)}^{6m}}-{{\left( 1-\sqrt{-3} \right)}^{6m}}}{2\sqrt{-3}}={}^{6}{{C}_{1}}+{}^{6}{{C}_{3}}\left( -3 \right)+...+{}^{6m}{{C}_{6m-1}}{{\left( -3 \right)}^{3m-1}}\]
We now choose to equate left hand side of above equation and equation (1) to have;
\[\begin{align}
& \Rightarrow S=\dfrac{{{\left( 1+\sqrt{-3} \right)}^{6m}}-{{\left( 1-\sqrt{-3} \right)}^{6m}}}{2\sqrt{-3}} \\
& \Rightarrow S=\dfrac{{{\left( 1+i\sqrt{3} \right)}^{6m}}-{{\left( 1-i\sqrt{3} \right)}^{6m}}}{2i\sqrt{3}}.......\left( 5 \right) \\
\end{align}\]
We see that in the numerator there are two complex numbers which are conjugate. We take $ z=1+i\sqrt{3} $ and convert it into $ \left( r,\theta \right) $ form to have;
\[ \begin{align}
& r=\sqrt{{{1}^{^{2}}}+{{\left( \sqrt{3} \right)}^{2}}}=\sqrt{4}=2,\theta ={{\tan }^{-1}}\left( \dfrac{\sqrt{3}}{1} \right)=\dfrac{\pi }{3} \\
& \therefore z=1+i\sqrt{3}=2\cos \left( \dfrac{\pi }{3} \right)+2i\sin \left( \dfrac{\pi }{3} \right) \\
\end{align}\]
We find the conjugate of $ z=1+i\sqrt{3} $ as $ \overline{z}=1-i\sqrt{3} $ and express it $ \left( r,\theta \right) $ form to have;
\[ \overline{z}=1-i\sqrt{3}=2\cos \left( \dfrac{\pi }{3} \right)-2i\sin \left( \dfrac{\pi }{3} \right)\]
We put the values of $ z,\overline{z} $ in equation (5) to have;
\[\begin{align}
& S=\dfrac{{{\left( 2\cos \left( \dfrac{\pi }{3} \right)+2i\sin \left( \dfrac{\pi }{3} \right) \right)}^{6m}}-{{\left( 2\cos \left( \dfrac{\pi }{3} \right)-2i\sin \left( \dfrac{\pi }{3} \right) \right)}^{6m}}}{2i\sqrt{3}} \\
& \Rightarrow S=\dfrac{{{2}^{6m}}{{\left( \cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right)}^{6m}}-{{2}^{6m}}{{\left( \cos \left( \dfrac{\pi }{3} \right)-i\sin \left( \dfrac{\pi }{3} \right) \right)}^{6m}}}{2i\sqrt{3}} \\
\end{align}\]
We use the identity $ {{\left( \cos \theta +i\sin \theta \right)}^{k}}=\cos k\theta +i\sin k\theta $ for $ \theta =\dfrac{\pi }{3},k=6m $ to have;
\[\begin{align}
& \Rightarrow S=\dfrac{{{2}^{6m}}\left( \cos 2\pi +i\sin 2\pi \right)-{{2}^{6m}}\left( \cos 2\pi -i\sin 2\pi \right)}{2i\sqrt{3}} \\
& \Rightarrow S=\dfrac{{{2}^{6m}}\left( \cos 2\pi +i\sin 2\pi -\cos 2\pi +i\sin 2\pi \right)}{2i\sqrt{3}} \\
& \Rightarrow S=\dfrac{{{2}^{6m}}\cdot 2i\sin 2\pi }{2i\sqrt{3}}=0\left( \because \sin 2\pi =0 \right) \\
& \Rightarrow \sum\limits_{r=1}^{k}{{{\left( -3 \right)}^{r}}{}^{3n}{{C}_{2r-1}}}=0 \\
\end{align}\]
Hence it is proved. \[\].
Note:
We note that the form $ \left( r,\theta \right) $ is called polar form where $ r $ is the modulus of the complex number and $ \theta $ is the argument of the complex number $ z=x+iy $ where $ x $ is called the real part and $ y $ is called the imaginary part. We can alternatively solve by putting $ x=i\sqrt{3} $ in the expansion of $ {{\left( 1+x \right)}^{6m}} $ and then comparing the imaginary parts of both sides of the equation.
Complete step by step answer:
We know that we can use the binomial theorem (or binomial expansion) to describe the algebraic expansion of the power of binomials. If $ x,y $ are the two terms of binomial with some positive integral power $ n $ then the binomial expansion is given by;
\[{{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{0}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{0}}+...+{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}\]
The above expression is called binomial formula or binomial identity. We know that we can convert any complex number $ z=x+iy $ into $ \left( r,\theta \right) $ form as ;\[z=r\cos \theta +ir\sin \theta \text{ where }r=\sqrt{{{x}^{2}}+{{y}^{2}}},\theta ={{\tan }^{-1}}\left( \dfrac{y}{x} \right)\]
The complex number $ \overline{z}=z-iy $ is called conjugate of $ z=x+iy $ whose $ \left( r,\theta \right) $ form is;
\[z=r\cos \theta -ir\sin \theta \text{ }\]
We are given in the question to prove
\[\sum\limits_{r=1}^{k}{{{\left( -3 \right)}^{r}}{}^{3n}{{C}_{2r-1}}}=0\]
Let us denote the summation on the left hand side as $ S $ . We have;
\[S=\sum\limits_{r=1}^{k}{{{\left( -3 \right)}^{r}}{}^{3n}{{C}_{2r-1}}}\]
We put $ n=2m $ for some integer $ m $ since we are given $ n $ is even. Then we have $ k=\dfrac{3\times 2m}{2}=3m $ . We put $ n=3m,k=2m $ in the above step and expand the summation to have;
\[\begin{align}
& \Rightarrow S=\sum\limits_{r=1}^{2m}{{{\left( -3 \right)}^{r}}{}^{6m}{{C}_{2r-1}}} \\
& \Rightarrow S={{\left( -3 \right)}^{0}}{}^{6m}{{C}_{0}}+\left( -3 \right){}^{6m}{{C}_{3}}+{{\left( -3 \right)}^{2}}{}^{6m}{{C}_{5}}+...+{{\left( -3 \right)}^{3m-1}}{}^{6m}{{C}_{3m-1}}.....\left( 1 \right) \\
\end{align}\]
We put $ x=1,y=x,n=6m $ in the binomial expansion to have.
\[{{\left( 1+x \right)}^{6m}}={}^{6m}{{C}_{0}}+{}^{6m}{{C}_{1}}x+{}^{6m}{{C}_{2}}{{x}^{2}}+...{}^{6m}{{C}_{6m-1}}{{x}^{6m-1}}+{}^{6m}{{C}_{6m}}{{x}^{6m}}.........\left( 2 \right)\]
We put $ x=1,y=-x,n=6m $ in the binomial expansion to have;
\[{{\left( 1-x \right)}^{6m}}={}^{6m}{{C}_{0}}+{}^{6m}{{C}_{1}}\left( -x \right)+{}^{6m}{{C}_{2}}{{\left( -x \right)}^{2}}+...{}^{6m-1}{{C}_{6m-1}}{{\left( -x \right)}^{6m-1}}+{}^{6m}{{C}_{6m}}{{\left( -x \right)}^{6m}}.........\left( 3 \right)\]
We subtract equation (3) from equation (2) and see that all the terms with even power of $ x $ will vanish. We have;
\[\begin{align}
& {{\left( 1+x \right)}^{6m}}-{{\left( 1-x \right)}^{6m}}={}^{6}{{C}_{1}}\left( x-\left( -x \right) \right)+{}^{6}{{C}_{3}}\left( {{x}^{3}}-{{\left( -x \right)}^{3}} \right)+...+{}^{6m}{{C}_{6m-1}}\left( {{x}^{6m-1}}-{{\left( -x \right)}^{6m-1}} \right) \\
& \Rightarrow {{\left( 1+x \right)}^{6m}}-{{\left( 1-x \right)}^{6m}}={}^{6}{{C}_{1}}\cdot 2x+2{{x}^{3}}{}^{6}{{C}_{3}}\cdot 2{{x}^{3}}+...+{}^{6m}{{C}_{6m-1}}\cdot 2{{x}^{6m-1}} \\
\end{align}\]
We divide both sides of the above equation by $ 2x $ to have;
\[\begin{align}
& \Rightarrow \dfrac{{{\left( 1+x \right)}^{6m}}-{{\left( 1-x \right)}^{6m}}}{2x}={}^{6}{{C}_{1}}+{}^{6}{{C}_{3}}{{x}^{2}}+...+{}^{6m}{{C}_{6m-1}}{{x}^{6m-2}} \\
& \Rightarrow \dfrac{{{\left( 1+x \right)}^{6m}}-{{\left( 1-x \right)}^{6m}}}{2x}={}^{6}{{C}_{1}}+{}^{6}{{C}_{3}}{{x}^{2}}+...+{}^{6m}{{C}_{6m-1}}{{\left( {{x}^{2}} \right)}^{3m-1}} \\
\end{align}\]
We put $ {{x}^{2}}=y $ in the above step to have;
\[\Rightarrow \dfrac{{{\left( 1+\sqrt{y} \right)}^{6m}}-{{\left( 1-\sqrt{y} \right)}^{6m}}}{2\sqrt{y}}={}^{6}{{C}_{1}}+{}^{6}{{C}_{3}}\cdot y+...+{}^{6m}{{C}_{6m-1}}{{\left( y \right)}^{3m-1}}......\left( 4 \right)\]
We observe the right hand above the equation and compare it with the right hand side of equation (1). We see that if we take $ y=-3 $ then the right hand sides of equation (1) and (4) will be the same. So we have
\[\Rightarrow \dfrac{{{\left( 1+\sqrt{-3} \right)}^{6m}}-{{\left( 1-\sqrt{-3} \right)}^{6m}}}{2\sqrt{-3}}={}^{6}{{C}_{1}}+{}^{6}{{C}_{3}}\left( -3 \right)+...+{}^{6m}{{C}_{6m-1}}{{\left( -3 \right)}^{3m-1}}\]
We now choose to equate left hand side of above equation and equation (1) to have;
\[\begin{align}
& \Rightarrow S=\dfrac{{{\left( 1+\sqrt{-3} \right)}^{6m}}-{{\left( 1-\sqrt{-3} \right)}^{6m}}}{2\sqrt{-3}} \\
& \Rightarrow S=\dfrac{{{\left( 1+i\sqrt{3} \right)}^{6m}}-{{\left( 1-i\sqrt{3} \right)}^{6m}}}{2i\sqrt{3}}.......\left( 5 \right) \\
\end{align}\]
We see that in the numerator there are two complex numbers which are conjugate. We take $ z=1+i\sqrt{3} $ and convert it into $ \left( r,\theta \right) $ form to have;
\[ \begin{align}
& r=\sqrt{{{1}^{^{2}}}+{{\left( \sqrt{3} \right)}^{2}}}=\sqrt{4}=2,\theta ={{\tan }^{-1}}\left( \dfrac{\sqrt{3}}{1} \right)=\dfrac{\pi }{3} \\
& \therefore z=1+i\sqrt{3}=2\cos \left( \dfrac{\pi }{3} \right)+2i\sin \left( \dfrac{\pi }{3} \right) \\
\end{align}\]
We find the conjugate of $ z=1+i\sqrt{3} $ as $ \overline{z}=1-i\sqrt{3} $ and express it $ \left( r,\theta \right) $ form to have;
\[ \overline{z}=1-i\sqrt{3}=2\cos \left( \dfrac{\pi }{3} \right)-2i\sin \left( \dfrac{\pi }{3} \right)\]
We put the values of $ z,\overline{z} $ in equation (5) to have;
\[\begin{align}
& S=\dfrac{{{\left( 2\cos \left( \dfrac{\pi }{3} \right)+2i\sin \left( \dfrac{\pi }{3} \right) \right)}^{6m}}-{{\left( 2\cos \left( \dfrac{\pi }{3} \right)-2i\sin \left( \dfrac{\pi }{3} \right) \right)}^{6m}}}{2i\sqrt{3}} \\
& \Rightarrow S=\dfrac{{{2}^{6m}}{{\left( \cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right)}^{6m}}-{{2}^{6m}}{{\left( \cos \left( \dfrac{\pi }{3} \right)-i\sin \left( \dfrac{\pi }{3} \right) \right)}^{6m}}}{2i\sqrt{3}} \\
\end{align}\]
We use the identity $ {{\left( \cos \theta +i\sin \theta \right)}^{k}}=\cos k\theta +i\sin k\theta $ for $ \theta =\dfrac{\pi }{3},k=6m $ to have;
\[\begin{align}
& \Rightarrow S=\dfrac{{{2}^{6m}}\left( \cos 2\pi +i\sin 2\pi \right)-{{2}^{6m}}\left( \cos 2\pi -i\sin 2\pi \right)}{2i\sqrt{3}} \\
& \Rightarrow S=\dfrac{{{2}^{6m}}\left( \cos 2\pi +i\sin 2\pi -\cos 2\pi +i\sin 2\pi \right)}{2i\sqrt{3}} \\
& \Rightarrow S=\dfrac{{{2}^{6m}}\cdot 2i\sin 2\pi }{2i\sqrt{3}}=0\left( \because \sin 2\pi =0 \right) \\
& \Rightarrow \sum\limits_{r=1}^{k}{{{\left( -3 \right)}^{r}}{}^{3n}{{C}_{2r-1}}}=0 \\
\end{align}\]
Hence it is proved. \[\].
Note:
We note that the form $ \left( r,\theta \right) $ is called polar form where $ r $ is the modulus of the complex number and $ \theta $ is the argument of the complex number $ z=x+iy $ where $ x $ is called the real part and $ y $ is called the imaginary part. We can alternatively solve by putting $ x=i\sqrt{3} $ in the expansion of $ {{\left( 1+x \right)}^{6m}} $ and then comparing the imaginary parts of both sides of the equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

