
Prove that
\[sin(A + B + C) = \sin A\cos B\cos C + \cos AsinB\cos C + \sin C\cos A\cos B - \sin A\sin B\sin C\]
Answer
576.6k+ views
Hint: Here we will assume \[A + B = x\] and \[C = y\] , we will then use the following identities \[\operatorname{Sin} (x + y) = \sin x\cos y + \cos x\sin y\]
\[\cos (x + y) = \cos x\cos y - \sin x\sin y\]
to get the desired answer.
Complete step-by-step answer:
Considering the Left hand side we get:-
\[LHS = \sin (A + B + C)\]
Let \[A + B = x\]………………(1)
\[C = y\]…………………….(2)
Hence we get:-
\[LHS = \sin (x + y)\]
Now applying the following identity
\[\operatorname{sin} (x + y) = \sin x\cos y + \cos x\sin y\]
We get:-
\[LHS = \sin x\cos y + \cos x\sin y\]
Now putting back the values of x and y from equation 1 and equation 2 we get:-
\[LHS = \sin \left( {A + B} \right)\cos C + \cos \left( {A + B} \right)\sin C\]
Again applying the identities
\[\operatorname{sin} (x + y) = \sin x\cos y + \cos x\sin y\]
\[\cos (x + y) = \cos x\cos y - \sin x\sin y\]
We get:-
\[LHS = \left[ {\sin A\cos B + \cos A\sin B} \right]\cos C + \left[ {\cos A\cos B - \sin A\sin B} \right]\sin C\]
Multiplying \[\cos C\] and \[\sin C\] into the brackets we get:-
\[
LHS = \sin A\cos B\cos C + \cos AsinB\cos C + \sin C\cos A\cos B - \sin A\sin B\sin C \\
{\text{ }} = RHS \\
\]
Therefore, L.H.S=R.H.S
Hence proved
Note: When the question contains A+B+C then just let A+B =x and C =y and apply the standard identities and solve them further. And substitute the term as mentioned in identities. The students should apply the correct identities in order to get the desired answer.
\[\cos (x + y) = \cos x\cos y - \sin x\sin y\]
to get the desired answer.
Complete step-by-step answer:
Considering the Left hand side we get:-
\[LHS = \sin (A + B + C)\]
Let \[A + B = x\]………………(1)
\[C = y\]…………………….(2)
Hence we get:-
\[LHS = \sin (x + y)\]
Now applying the following identity
\[\operatorname{sin} (x + y) = \sin x\cos y + \cos x\sin y\]
We get:-
\[LHS = \sin x\cos y + \cos x\sin y\]
Now putting back the values of x and y from equation 1 and equation 2 we get:-
\[LHS = \sin \left( {A + B} \right)\cos C + \cos \left( {A + B} \right)\sin C\]
Again applying the identities
\[\operatorname{sin} (x + y) = \sin x\cos y + \cos x\sin y\]
\[\cos (x + y) = \cos x\cos y - \sin x\sin y\]
We get:-
\[LHS = \left[ {\sin A\cos B + \cos A\sin B} \right]\cos C + \left[ {\cos A\cos B - \sin A\sin B} \right]\sin C\]
Multiplying \[\cos C\] and \[\sin C\] into the brackets we get:-
\[
LHS = \sin A\cos B\cos C + \cos AsinB\cos C + \sin C\cos A\cos B - \sin A\sin B\sin C \\
{\text{ }} = RHS \\
\]
Therefore, L.H.S=R.H.S
Hence proved
Note: When the question contains A+B+C then just let A+B =x and C =y and apply the standard identities and solve them further. And substitute the term as mentioned in identities. The students should apply the correct identities in order to get the desired answer.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

