
Prove that:
$\sin x + \sin 3x + \sin 5x + \sin 7x = 4\cos x\cos 2x\sin 4x$
Answer
576.9k+ views
Hint: For a question like this we approach the solution by simplifying anyone the side and proving it equal to the other side, here also we will simplify the left-hand side using some of the trigonometric formulas like
$\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
We simplify in such a manner that it results in the equivalent value to the other side expression
Complete step by step Answer:
Given data: $\sin x + \sin 3x + \sin 5x + \sin 7x = 4\cos x\cos 2x\sin 4x$
Taking the left-hand side
$ \Rightarrow \sin x + \sin 3x + \sin 5x + \sin 7x$
On rearranging we get,
$ \Rightarrow \sin x + \sin 7x + \sin 3x + \sin 5x$
Using the formula $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ in the first two and last two terms, we get,
$ \Rightarrow 2\sin (4x)\cos 3x + 2\sin (4x)\cos x$
Taking 2sin(4x) common from both the terms
$ \Rightarrow 2\sin (4x)\left[ {\cos 3x + \cos x} \right]$
Now using the formula $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$, we get,
$ \Rightarrow 2\sin (4x)2\cos (2x)\cos (x)$
$ \Rightarrow 4\cos x\cos 2x\sin 4x$, which is equal to the right-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation
Note: An alternative method for the solution of the given question can be
This time we’ll simplify the term in the right-hand side and will prove it equal to the term in the left-hand side
$ \Rightarrow 4\cos x\cos 2x\sin 4x$
$ \Rightarrow 4\cos \left( {\dfrac{{3x - x}}{2}} \right)\cos \left( {\dfrac{{3x + x}}{2}} \right)\sin 4x$
Using the formula $2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = \cos A + \cos B$
$ \Rightarrow 2[\cos 3x + \cos x]\sin 4x$
$ \Rightarrow 2\sin 4x\cos 3x + 2\cos x\sin 4x$
$ \Rightarrow 2\sin \left( {\dfrac{{7x + x}}{2}} \right)\cos \left( {\dfrac{{7x - x}}{2}} \right) + 2\cos \left( {\dfrac{{5x - 3x}}{2}} \right)\sin \left( {\dfrac{{5x + 3x}}{2}} \right)$
Using the formula $2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = \sin A + \sin B$
$ \Rightarrow \sin 7x + \sin x + \sin 3x + \sin 5x$, which is equal to the left-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation
$\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
We simplify in such a manner that it results in the equivalent value to the other side expression
Complete step by step Answer:
Given data: $\sin x + \sin 3x + \sin 5x + \sin 7x = 4\cos x\cos 2x\sin 4x$
Taking the left-hand side
$ \Rightarrow \sin x + \sin 3x + \sin 5x + \sin 7x$
On rearranging we get,
$ \Rightarrow \sin x + \sin 7x + \sin 3x + \sin 5x$
Using the formula $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ in the first two and last two terms, we get,
$ \Rightarrow 2\sin (4x)\cos 3x + 2\sin (4x)\cos x$
Taking 2sin(4x) common from both the terms
$ \Rightarrow 2\sin (4x)\left[ {\cos 3x + \cos x} \right]$
Now using the formula $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$, we get,
$ \Rightarrow 2\sin (4x)2\cos (2x)\cos (x)$
$ \Rightarrow 4\cos x\cos 2x\sin 4x$, which is equal to the right-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation
Note: An alternative method for the solution of the given question can be
This time we’ll simplify the term in the right-hand side and will prove it equal to the term in the left-hand side
$ \Rightarrow 4\cos x\cos 2x\sin 4x$
$ \Rightarrow 4\cos \left( {\dfrac{{3x - x}}{2}} \right)\cos \left( {\dfrac{{3x + x}}{2}} \right)\sin 4x$
Using the formula $2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = \cos A + \cos B$
$ \Rightarrow 2[\cos 3x + \cos x]\sin 4x$
$ \Rightarrow 2\sin 4x\cos 3x + 2\cos x\sin 4x$
$ \Rightarrow 2\sin \left( {\dfrac{{7x + x}}{2}} \right)\cos \left( {\dfrac{{7x - x}}{2}} \right) + 2\cos \left( {\dfrac{{5x - 3x}}{2}} \right)\sin \left( {\dfrac{{5x + 3x}}{2}} \right)$
Using the formula $2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = \sin A + \sin B$
$ \Rightarrow \sin 7x + \sin x + \sin 3x + \sin 5x$, which is equal to the left-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

