
Prove that, $\sin x + \cos x\cot x = \csc x$
Answer
536.1k+ views
Hint: All trigonometric functions are defined for a right-angled triangle. To verify the trigonometric identities or equations, either we use the basic formulas that define the individual functions or we use the defined identities to solve the same. For a right-angled triangle with hypotenuse as “h”, perpendicular as “p” and base as “b”, we define $\sin \theta = \dfrac{p}{h},\cos \theta = \dfrac{b}{h},\tan \theta = \dfrac{p}{b}$
Complete step by step answer:
Amongst all the ways to prove this question, the easiest is to prove that the left-hand side is equal to the right-hand side. ($LHS = RHS$)
For any right-angled triangle, $\sin \theta = \dfrac{p}{h},\cos \theta = \dfrac{b}{h},\tan \theta = \dfrac{p}{b},\csc \theta = \dfrac{h}{p},\sec \theta = \dfrac{h}{b},\cot \theta = \dfrac{b}{p}$
Where hypotenuse is denoted by “h”, perpendicular is denoted by “p” and base is denoted by “b”. We know that,
$LHS = \sin x + \cos x\cot x$
$\dfrac{p}{h} + \left( {\dfrac{b}{h} \times \dfrac{b}{p}} \right)$………….(putting the values of the functions)
$\dfrac{{{p^2} + {b^2}}}{{hp}} = \dfrac{{{h^2}}}{{hp}} = \dfrac{h}{p}$……..(Since, sum of square of perpendicular and base of a right-angled triangle is equal to the square of the hypotenuse.)
$ \Rightarrow LHS = \dfrac{h}{p}$
Now, $\csc \theta = \dfrac{h}{p}$
Hence, $LHS = \csc x = RHS$
Thus, the question is verified.
Alternate method:
We know that $\cot x = \dfrac{{\cos x}}{{\sin x}}$. Using this on the LHS,
$LHS = \sin x + \cos x \times \dfrac{{\cos x}}{{\sin x}} = \sin x + \dfrac{{{{\cos }^2}x}}{{\sin x}}$
Taking the LCM,
$LHS = \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\sin x}} = \dfrac{1}{{\sin x}}$……( since we know that, ${\sin ^2}x + {\cos ^2}x = 1$)
Now, $\csc x = \dfrac{1}{{\sin x}}$.
Therefore, LHS = RHS.
Note:Each of the six trigonometric functions is equal to its co-function evaluated at the complementary angle. Periodicity of trig functions: Sine, cosine, secant, and cosecant have period 2π while tangent and cotangent have period π. Sine, tangent, cotangent, and cosecant are odd functions while cosine and secant are even functions.
Complete step by step answer:
Amongst all the ways to prove this question, the easiest is to prove that the left-hand side is equal to the right-hand side. ($LHS = RHS$)
For any right-angled triangle, $\sin \theta = \dfrac{p}{h},\cos \theta = \dfrac{b}{h},\tan \theta = \dfrac{p}{b},\csc \theta = \dfrac{h}{p},\sec \theta = \dfrac{h}{b},\cot \theta = \dfrac{b}{p}$
Where hypotenuse is denoted by “h”, perpendicular is denoted by “p” and base is denoted by “b”. We know that,
$LHS = \sin x + \cos x\cot x$
$\dfrac{p}{h} + \left( {\dfrac{b}{h} \times \dfrac{b}{p}} \right)$………….(putting the values of the functions)
$\dfrac{{{p^2} + {b^2}}}{{hp}} = \dfrac{{{h^2}}}{{hp}} = \dfrac{h}{p}$……..(Since, sum of square of perpendicular and base of a right-angled triangle is equal to the square of the hypotenuse.)
$ \Rightarrow LHS = \dfrac{h}{p}$
Now, $\csc \theta = \dfrac{h}{p}$
Hence, $LHS = \csc x = RHS$
Thus, the question is verified.
Alternate method:
We know that $\cot x = \dfrac{{\cos x}}{{\sin x}}$. Using this on the LHS,
$LHS = \sin x + \cos x \times \dfrac{{\cos x}}{{\sin x}} = \sin x + \dfrac{{{{\cos }^2}x}}{{\sin x}}$
Taking the LCM,
$LHS = \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\sin x}} = \dfrac{1}{{\sin x}}$……( since we know that, ${\sin ^2}x + {\cos ^2}x = 1$)
Now, $\csc x = \dfrac{1}{{\sin x}}$.
Therefore, LHS = RHS.
Note:Each of the six trigonometric functions is equal to its co-function evaluated at the complementary angle. Periodicity of trig functions: Sine, cosine, secant, and cosecant have period 2π while tangent and cotangent have period π. Sine, tangent, cotangent, and cosecant are odd functions while cosine and secant are even functions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

