
How do you prove that $\sin \left( {{\cot }^{-1}}\left( \tan \left( {{\cos }^{-1}}\left( \sin x \right) \right) \right) \right)=\sin x$ ?
Answer
551.7k+ views
Hint: In this question, we have to prove a trigonometric equation. Thus, we will apply the trigonometric formulas to get the solution. First, we will change the sin function into cos function, by using the angle formula, after that we will apply the inverse-trigonometric formula \[{{\cos }^{-1}}(\cos x)=x\] . Then, we will again convert the tan function into cot function using the angle formula. In the end we will apply the inverse-trigonometric formula \[{{\cot }^{-1}}(\cot x)=x\] , which is equal to the right-hand side of the equation, which is the required solution to the problem.
Complete step by step solution:
According to the question, we have to prove the trigonometric equation.
Thus, we will use trigonometric formulas to get the solution.
The trigonometric equation given to us is $\sin \left( {{\cot }^{-1}}\left( \tan \left( {{\cos }^{-1}}\left( \sin x \right) \right) \right) \right)=\sin x$ ----- (1)
So, we start solving this problem by using the left-hand side of the equation (1), we get
$LHS=\sin \left( {{\cot }^{-1}}\left( \tan \left( {{\cos }^{-1}}\left( \sin x \right) \right) \right) \right)$
Let us first solve the brackets of the above equation, by converting the sin function into cos function using the angle formula $\cos \left( \dfrac{\pi }{2}-x \right)=\sin x$ , we get
$\Rightarrow \sin \left( {{\cot }^{-1}}\left( \tan \left( {{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right) \right) \right) \right)$
Now, we will again use the trigonometric formula \[{{\cos }^{-1}}(\cos x)=x\] in the above equation, we get
$\Rightarrow \sin \left( {{\cot }^{-1}}\left( \tan \left( \dfrac{\pi }{2}-x \right) \right) \right)$
So, again we will convert the tan function into cos function using the angle formula $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$ , we get
$\Rightarrow \sin \left( {{\cot }^{-1}}\left( \cot x \right) \right)$
Now, we will again use the trigonometric formula \[{{\cot }^{-1}}(\cot x)=x\] in the above equation, we get
$\Rightarrow \sin x=RHS$
Therefore, we proved that the left-hand side is equal to the right-hand side, that is $\sin \left( {{\cot }^{-1}}\left( \tan \left( {{\cos }^{-1}}\left( \sin x \right) \right) \right) \right)=\sin x$ .
Note:
While solving this problem, do all the steps properly to avoid confusion and mathematical errors. Do remember all the trigonometric formulas and mention them in the steps, wherever applicable, to get an accurate answer.
Complete step by step solution:
According to the question, we have to prove the trigonometric equation.
Thus, we will use trigonometric formulas to get the solution.
The trigonometric equation given to us is $\sin \left( {{\cot }^{-1}}\left( \tan \left( {{\cos }^{-1}}\left( \sin x \right) \right) \right) \right)=\sin x$ ----- (1)
So, we start solving this problem by using the left-hand side of the equation (1), we get
$LHS=\sin \left( {{\cot }^{-1}}\left( \tan \left( {{\cos }^{-1}}\left( \sin x \right) \right) \right) \right)$
Let us first solve the brackets of the above equation, by converting the sin function into cos function using the angle formula $\cos \left( \dfrac{\pi }{2}-x \right)=\sin x$ , we get
$\Rightarrow \sin \left( {{\cot }^{-1}}\left( \tan \left( {{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right) \right) \right) \right)$
Now, we will again use the trigonometric formula \[{{\cos }^{-1}}(\cos x)=x\] in the above equation, we get
$\Rightarrow \sin \left( {{\cot }^{-1}}\left( \tan \left( \dfrac{\pi }{2}-x \right) \right) \right)$
So, again we will convert the tan function into cos function using the angle formula $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$ , we get
$\Rightarrow \sin \left( {{\cot }^{-1}}\left( \cot x \right) \right)$
Now, we will again use the trigonometric formula \[{{\cot }^{-1}}(\cot x)=x\] in the above equation, we get
$\Rightarrow \sin x=RHS$
Therefore, we proved that the left-hand side is equal to the right-hand side, that is $\sin \left( {{\cot }^{-1}}\left( \tan \left( {{\cos }^{-1}}\left( \sin x \right) \right) \right) \right)=\sin x$ .
Note:
While solving this problem, do all the steps properly to avoid confusion and mathematical errors. Do remember all the trigonometric formulas and mention them in the steps, wherever applicable, to get an accurate answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

