
Prove that $\sin A(1+\tan A)+\cos A(1+\cot A)=\sec A+\csc A$
Answer
610.5k+ views
Hint: Here, first we should consider the LHS and convert tan A and cot A as:
$\tan A=\dfrac{\sin A}{\cos A}$
$\cot A=\dfrac{\cos A}{\sin A}$
Then, take outside the common factors and do the simplification to make it much simpler.
Here, we also have to apply the trigonometric identity, ${{\sin }^{2}}A+{{\cos }^{2}}A=1$
Here, we have to prove $\sin A(1+\tan A)+\cos A(1+\cot A)=\sec A+\csc A$.
Here, first consider the LHS, $\sin A(1+\tan A)+\cos A(1+\cot A)=\sec A+\csc A$.
Complete step-by-step answer:
We know that:
$\tan A=\dfrac{\sin A}{\cos A}$
$\cot A=\dfrac{\cos A}{\sin A}$
Now, by substituting these values in the LHS, we obtain the equation:
$\sin A(1+\tan A)+\cos A(1+\cot A)=\sin A\left( 1+\dfrac{\sin A}{\cos A} \right)+\cos A\left( 1+\dfrac{\cos A}{\sin A} \right)$
Now, from the above equation we can take outside $\dfrac{1}{\cos A}$ from the first term and $\dfrac{1}{\sin A}$ from the second term. Hence, we will get the equation:
$\sin A(1+\tan A)+\cos A(1+\cot A)=\dfrac{\sin A}{\cos A}\left( \cos A+\sin A \right)+\dfrac{\cos A}{\sin A}\left( \sin A+\cos A \right)$
Here, $\sin A+\cos A$ is a common factor for both the terms. Therefore, we can take it outside
$\Rightarrow \sin A(1+\tan A)+\cos A(1+\cot A)=\left( \cos A+\sin A \right)\left( \dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin A} \right)$
Next, by taking the LCM we get:
$\Rightarrow \sin A(1+\tan A)+\cos A(1+\cot A)=\left( \cos A+\sin A \right)\left( \dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{\cos A\sin A} \right)$
We know that ${{\sin }^{2}}A+{{\cos }^{2}}A=1$.
$\begin{align}
& \Rightarrow \sin A(1+\tan A)+\cos A(1+\cot A)=\left( \cos A+\sin A \right)\left( \dfrac{1}{\cos A\sin A} \right) \\
& \Rightarrow \sin A(1+\tan A)+\cos A(1+\cot A)=\dfrac{\cos A+\sin A}{\cos A\sin A} \\
\end{align}$
Now, by splitting the terms,
$\Rightarrow \sin A(1+\tan A)+\cos A(1+\cot A)=\dfrac{\cos A}{\cos A\sin A}+\dfrac{\sin
A}{\cos A\sin A}$
Next, we have to do the cancellation.
$\Rightarrow \sin A(1+\tan A)+\cos A(1+\cot A)=\dfrac{1}{\sin A}+\dfrac{1}{\cos A}$
We know that the reciprocal of sin A is cosec A and reciprocal of cos A is sec A. That is,
$\begin{align}
& \dfrac{1}{\sin A}=\csc A \\
& \dfrac{1}{\cos A}=\sec A \\
\end{align}$
Now, by substituting these values in our equation, we get:
$\sin A(1+\tan A)+\cos A(1+\cot A)=\csc A+\sec A$
Hence, proved.
Note: Here, you should be familiar about the trigonometric identity ${{\sin }^{2}}A+{{\cos }^{2}}A=1$. Without knowing this you can’t go further. There are six trigonometric ratios and from sin, cos and tan we can define other trigonometric ratios where:
$\begin{align}
& \dfrac{1}{\sin A}=\csc A \\
& \dfrac{1}{\cos A}=\sec A \\
& \dfrac{1}{\tan A}=\cot A \\
\end{align}$
$\tan A=\dfrac{\sin A}{\cos A}$
$\cot A=\dfrac{\cos A}{\sin A}$
Then, take outside the common factors and do the simplification to make it much simpler.
Here, we also have to apply the trigonometric identity, ${{\sin }^{2}}A+{{\cos }^{2}}A=1$
Here, we have to prove $\sin A(1+\tan A)+\cos A(1+\cot A)=\sec A+\csc A$.
Here, first consider the LHS, $\sin A(1+\tan A)+\cos A(1+\cot A)=\sec A+\csc A$.
Complete step-by-step answer:
We know that:
$\tan A=\dfrac{\sin A}{\cos A}$
$\cot A=\dfrac{\cos A}{\sin A}$
Now, by substituting these values in the LHS, we obtain the equation:
$\sin A(1+\tan A)+\cos A(1+\cot A)=\sin A\left( 1+\dfrac{\sin A}{\cos A} \right)+\cos A\left( 1+\dfrac{\cos A}{\sin A} \right)$
Now, from the above equation we can take outside $\dfrac{1}{\cos A}$ from the first term and $\dfrac{1}{\sin A}$ from the second term. Hence, we will get the equation:
$\sin A(1+\tan A)+\cos A(1+\cot A)=\dfrac{\sin A}{\cos A}\left( \cos A+\sin A \right)+\dfrac{\cos A}{\sin A}\left( \sin A+\cos A \right)$
Here, $\sin A+\cos A$ is a common factor for both the terms. Therefore, we can take it outside
$\Rightarrow \sin A(1+\tan A)+\cos A(1+\cot A)=\left( \cos A+\sin A \right)\left( \dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin A} \right)$
Next, by taking the LCM we get:
$\Rightarrow \sin A(1+\tan A)+\cos A(1+\cot A)=\left( \cos A+\sin A \right)\left( \dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{\cos A\sin A} \right)$
We know that ${{\sin }^{2}}A+{{\cos }^{2}}A=1$.
$\begin{align}
& \Rightarrow \sin A(1+\tan A)+\cos A(1+\cot A)=\left( \cos A+\sin A \right)\left( \dfrac{1}{\cos A\sin A} \right) \\
& \Rightarrow \sin A(1+\tan A)+\cos A(1+\cot A)=\dfrac{\cos A+\sin A}{\cos A\sin A} \\
\end{align}$
Now, by splitting the terms,
$\Rightarrow \sin A(1+\tan A)+\cos A(1+\cot A)=\dfrac{\cos A}{\cos A\sin A}+\dfrac{\sin
A}{\cos A\sin A}$
Next, we have to do the cancellation.
$\Rightarrow \sin A(1+\tan A)+\cos A(1+\cot A)=\dfrac{1}{\sin A}+\dfrac{1}{\cos A}$
We know that the reciprocal of sin A is cosec A and reciprocal of cos A is sec A. That is,
$\begin{align}
& \dfrac{1}{\sin A}=\csc A \\
& \dfrac{1}{\cos A}=\sec A \\
\end{align}$
Now, by substituting these values in our equation, we get:
$\sin A(1+\tan A)+\cos A(1+\cot A)=\csc A+\sec A$
Hence, proved.
Note: Here, you should be familiar about the trigonometric identity ${{\sin }^{2}}A+{{\cos }^{2}}A=1$. Without knowing this you can’t go further. There are six trigonometric ratios and from sin, cos and tan we can define other trigonometric ratios where:
$\begin{align}
& \dfrac{1}{\sin A}=\csc A \\
& \dfrac{1}{\cos A}=\sec A \\
& \dfrac{1}{\tan A}=\cot A \\
\end{align}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

