
Prove that: $\sin 3x + \sin 2x - \sin x = 4\sin x\cos \dfrac{x}{2}\cos \dfrac{{3x}}{2}$
Answer
576.3k+ views
Hint: For a question like this we approach the solution by simplifying anyone the side and proving it equal to the other side, here also we will simplify the left-hand side using some of the trigonometric formulas like
$\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
$\sin 2A = 2\sin A\cos A$
We simplify in such a manner that it results in the equivalent value to the other side expression.
Complete step by step Answer:
Given data:$\sin 3x + \sin 2x - \sin x = 4\sin x\cos \dfrac{x}{2}\cos \dfrac{{3x}}{2}$
On simplifying the left-hand side
$ \Rightarrow \sin 3x + \sin 2x - \sin x$
On rearranging we get,
$ \Rightarrow \sin 3x - \sin x + \sin 2x$
Using the formula $\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$
$ \Rightarrow 2\sin \left( {\dfrac{{3x - x}}{2}} \right)\cos \left( {\dfrac{{3x + x}}{2}} \right) + \sin 2x$
On simplification we get,
$ \Rightarrow 2\sin \left( x \right)\cos \left( {2x} \right) + \sin 2x$
Now using the formula$\sin 2A = 2\sin A\cos A$
$ \Rightarrow 2\sin \left( x \right)\cos \left( {2x} \right) + 2\sin x\cos x$
Taking 2sinx common from both the terms,
$ \Rightarrow 2\sin x(\cos 2x + \cos x)$
Now using the formula$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$, we get,
$ \Rightarrow 2\sin x\left[ {2\cos \left( {\dfrac{{2x + x}}{2}} \right)\cos \left( {\dfrac{{2x - x}}{2}} \right)} \right]$
$ \Rightarrow 2 \times 2\cos \left( {\dfrac{{3x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)\sin x$
$ \Rightarrow 4\sin x\cos \dfrac{x}{2}\cos \dfrac{{3x}}{2}$, which is equal to the left-hand side in the given equation
Since the expression in the Left-hand sideis equal to the expression in the right-hand side
We have proved the given equation.
Note: An alternative method for the solution of this question can be
On simplifying the right-hand side
$ \Rightarrow 4\sin x\cos \dfrac{x}{2}\cos \dfrac{{3x}}{2}$
$ \Rightarrow 2\sin x\left[ {2\cos \left( {\dfrac{{2x - x}}{2}} \right)\cos \left( {\dfrac{{2x + x}}{2}} \right)} \right]$
Using the formula$2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = \cos A + \cos B$
$ \Rightarrow 2\sin x\left[ {\cos 2x + \cos x} \right]$
On simplifying the brackets
$ \Rightarrow 2\sin x\cos 2x + 2\sin x\cos x$
Now using the formula $2\sin A\cos A = \sin 2A$
$ \Rightarrow 2\sin x\cos 2x + \sin 2x$
$ \Rightarrow 2\sin \left( {\dfrac{{3x - x}}{2}} \right)\cos \left( {\dfrac{{3x + x}}{2}} \right) + \sin 2x$
On simplifying using the formula $2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right) = \sin A - \sin B$
$ \Rightarrow [\sin 3x - \sin x] + \sin 2x$
$ \Rightarrow \sin 3x + \sin 2x - \sin x$, which is equal to the left-hand side in the given equation
Since the expression in the Left-hand side is equal to the expression in the right-hand side
We have proved the given equation
$\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
$\sin 2A = 2\sin A\cos A$
We simplify in such a manner that it results in the equivalent value to the other side expression.
Complete step by step Answer:
Given data:$\sin 3x + \sin 2x - \sin x = 4\sin x\cos \dfrac{x}{2}\cos \dfrac{{3x}}{2}$
On simplifying the left-hand side
$ \Rightarrow \sin 3x + \sin 2x - \sin x$
On rearranging we get,
$ \Rightarrow \sin 3x - \sin x + \sin 2x$
Using the formula $\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$
$ \Rightarrow 2\sin \left( {\dfrac{{3x - x}}{2}} \right)\cos \left( {\dfrac{{3x + x}}{2}} \right) + \sin 2x$
On simplification we get,
$ \Rightarrow 2\sin \left( x \right)\cos \left( {2x} \right) + \sin 2x$
Now using the formula$\sin 2A = 2\sin A\cos A$
$ \Rightarrow 2\sin \left( x \right)\cos \left( {2x} \right) + 2\sin x\cos x$
Taking 2sinx common from both the terms,
$ \Rightarrow 2\sin x(\cos 2x + \cos x)$
Now using the formula$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$, we get,
$ \Rightarrow 2\sin x\left[ {2\cos \left( {\dfrac{{2x + x}}{2}} \right)\cos \left( {\dfrac{{2x - x}}{2}} \right)} \right]$
$ \Rightarrow 2 \times 2\cos \left( {\dfrac{{3x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)\sin x$
$ \Rightarrow 4\sin x\cos \dfrac{x}{2}\cos \dfrac{{3x}}{2}$, which is equal to the left-hand side in the given equation
Since the expression in the Left-hand sideis equal to the expression in the right-hand side
We have proved the given equation.
Note: An alternative method for the solution of this question can be
On simplifying the right-hand side
$ \Rightarrow 4\sin x\cos \dfrac{x}{2}\cos \dfrac{{3x}}{2}$
$ \Rightarrow 2\sin x\left[ {2\cos \left( {\dfrac{{2x - x}}{2}} \right)\cos \left( {\dfrac{{2x + x}}{2}} \right)} \right]$
Using the formula$2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = \cos A + \cos B$
$ \Rightarrow 2\sin x\left[ {\cos 2x + \cos x} \right]$
On simplifying the brackets
$ \Rightarrow 2\sin x\cos 2x + 2\sin x\cos x$
Now using the formula $2\sin A\cos A = \sin 2A$
$ \Rightarrow 2\sin x\cos 2x + \sin 2x$
$ \Rightarrow 2\sin \left( {\dfrac{{3x - x}}{2}} \right)\cos \left( {\dfrac{{3x + x}}{2}} \right) + \sin 2x$
On simplifying using the formula $2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right) = \sin A - \sin B$
$ \Rightarrow [\sin 3x - \sin x] + \sin 2x$
$ \Rightarrow \sin 3x + \sin 2x - \sin x$, which is equal to the left-hand side in the given equation
Since the expression in the Left-hand side is equal to the expression in the right-hand side
We have proved the given equation
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

