
Prove that: \[{{\sin }^{2}}B={{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)-2\sin A\cos B\sin \left( A-B \right)\].
Answer
595.2k+ views
Hint: For solving this question, first we take sin (A -B) common from the terms in which sin (A – B) is present and apply the expansion of sin (A – B) in the right-hand side. After this, by applying algebraic and trigonometry formulas, we easily prove left hand side equal to right hand side.
Complete step-by-step answer:
Some of the useful trigonometric formulas used in solving this problem.
sin (A + B) = sin A cos B + cos A sin B
sin (A − B) = sin A cos B − cos A sin B
According to the problem statement, we consider the right-hand side of the equation for proving equivalence of both sides. First, we expand the right-hand side using the above-mentioned formulas.
Considering the right-hand side of the question, we have
\[\Rightarrow {{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)-2\sin A\cos B\sin \left( A-B \right)\]
Taking sin (A – B) common from the terms, we get
\[\Rightarrow {{\sin }^{2}}A+\sin \left( A-B \right)\left[ \sin \left( A-B \right)-2\sin A\cos B \right]\]
Expand the sin (A – B) inside the square bracket, we get
$\begin{align}
& \Rightarrow {{\sin }^{2}}A+\sin \left( A-B \right)\left[ \sin A\cos B-\cos A\sin B-2\sin A\cos B \right] \\
& \Rightarrow {{\sin }^{2}}A+\sin \left( A-B \right)\left[ -\cos A\sin B-\sin A\cos B \right] \\
& \Rightarrow {{\sin }^{2}}A-\sin \left( A-B \right)\left[ \cos A\sin B+\sin A\cos B \right] \\
\end{align}$
We know that the \[\cos A\sin B+\sin A\cos B=\sin \left( A+B \right)\], using this we simplify our expression as,
$\Rightarrow {{\sin }^{2}}A-\sin \left( A-B \right)\sin \left( A+B \right)\ldots \left( 1 \right)$
Now, expanding $\sin \left( A-B \right)\sin \left( A+B \right)$, we get
$\sin \left( A-B \right)\sin \left( A+B \right)=\left( \sin A\cos B-\cos A\sin B \right)\cdot \left( \sin A\cos B+\cos A\sin B \right)$
By using the algebraic identity $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$, we have:
\[\begin{align}
& \sin \left( A-B \right)\sin \left( A+B \right)={{\left( \sin A\cos B \right)}^{2}}-{{\left( \cos A\sin B \right)}^{2}} \\
& ={{\sin }^{2}}A{{\cos }^{2}}B-{{\cos }^{2}}A{{\sin }^{2}}B \\
\end{align}\]
Now, applying the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
\[\begin{align}
& \sin \left( A-B \right)\sin \left( A+B \right)={{\sin }^{2}}A\left( 1-{{\sin }^{2}}B \right)-{{\sin }^{2}}B\left( 1-{{\sin }^{2}}A \right) \\
& ={{\sin }^{2}}A-{{\sin }^{2}}A\cdot {{\sin }^{2}}B-{{\sin }^{2}}B+{{\sin }^{2}}B\cdot {{\sin }^{2}}A \\
& ={{\sin }^{2}}A-{{\sin }^{2}}B\ldots \left( 2 \right) \\
\end{align}\]
Putting the value of equation (2) in equation (1), we get
$\begin{align}
& \Rightarrow {{\sin }^{2}}A-\left( {{\sin }^{2}}A-{{\sin }^{2}}B \right) \\
& \Rightarrow {{\sin }^{2}}A-{{\sin }^{2}}A+{{\sin }^{2}}B \\
& \Rightarrow {{\sin }^{2}}B \\
\end{align}$
Hence, we proved the equivalence of both sides by considering the expression of the left side.
Note: Students must remember the trigonometric formulas associated with different functions. One important step is the simplification by taking sin (A-B) common, and then applying a suitable identity.
Complete step-by-step answer:
Some of the useful trigonometric formulas used in solving this problem.
sin (A + B) = sin A cos B + cos A sin B
sin (A − B) = sin A cos B − cos A sin B
According to the problem statement, we consider the right-hand side of the equation for proving equivalence of both sides. First, we expand the right-hand side using the above-mentioned formulas.
Considering the right-hand side of the question, we have
\[\Rightarrow {{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)-2\sin A\cos B\sin \left( A-B \right)\]
Taking sin (A – B) common from the terms, we get
\[\Rightarrow {{\sin }^{2}}A+\sin \left( A-B \right)\left[ \sin \left( A-B \right)-2\sin A\cos B \right]\]
Expand the sin (A – B) inside the square bracket, we get
$\begin{align}
& \Rightarrow {{\sin }^{2}}A+\sin \left( A-B \right)\left[ \sin A\cos B-\cos A\sin B-2\sin A\cos B \right] \\
& \Rightarrow {{\sin }^{2}}A+\sin \left( A-B \right)\left[ -\cos A\sin B-\sin A\cos B \right] \\
& \Rightarrow {{\sin }^{2}}A-\sin \left( A-B \right)\left[ \cos A\sin B+\sin A\cos B \right] \\
\end{align}$
We know that the \[\cos A\sin B+\sin A\cos B=\sin \left( A+B \right)\], using this we simplify our expression as,
$\Rightarrow {{\sin }^{2}}A-\sin \left( A-B \right)\sin \left( A+B \right)\ldots \left( 1 \right)$
Now, expanding $\sin \left( A-B \right)\sin \left( A+B \right)$, we get
$\sin \left( A-B \right)\sin \left( A+B \right)=\left( \sin A\cos B-\cos A\sin B \right)\cdot \left( \sin A\cos B+\cos A\sin B \right)$
By using the algebraic identity $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$, we have:
\[\begin{align}
& \sin \left( A-B \right)\sin \left( A+B \right)={{\left( \sin A\cos B \right)}^{2}}-{{\left( \cos A\sin B \right)}^{2}} \\
& ={{\sin }^{2}}A{{\cos }^{2}}B-{{\cos }^{2}}A{{\sin }^{2}}B \\
\end{align}\]
Now, applying the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
\[\begin{align}
& \sin \left( A-B \right)\sin \left( A+B \right)={{\sin }^{2}}A\left( 1-{{\sin }^{2}}B \right)-{{\sin }^{2}}B\left( 1-{{\sin }^{2}}A \right) \\
& ={{\sin }^{2}}A-{{\sin }^{2}}A\cdot {{\sin }^{2}}B-{{\sin }^{2}}B+{{\sin }^{2}}B\cdot {{\sin }^{2}}A \\
& ={{\sin }^{2}}A-{{\sin }^{2}}B\ldots \left( 2 \right) \\
\end{align}\]
Putting the value of equation (2) in equation (1), we get
$\begin{align}
& \Rightarrow {{\sin }^{2}}A-\left( {{\sin }^{2}}A-{{\sin }^{2}}B \right) \\
& \Rightarrow {{\sin }^{2}}A-{{\sin }^{2}}A+{{\sin }^{2}}B \\
& \Rightarrow {{\sin }^{2}}B \\
\end{align}$
Hence, we proved the equivalence of both sides by considering the expression of the left side.
Note: Students must remember the trigonometric formulas associated with different functions. One important step is the simplification by taking sin (A-B) common, and then applying a suitable identity.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

