
Prove that $ \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ = 0 $ .
Answer
510k+ views
Hint: Here, we will use the formula that $ \cos $ over $ a + b $ is equal to sum of product of $ \cos a $ and $ \cos b $ and product of $ - \sin a $ and $ \sin b $ . Then substitute the value of $ \cos $ to get the required answer.
Complete step-by-step answer:
The given equation is $ \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ = 0 $ .
To prove the value of given equation, we will take left hand side term, that is,
$ \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ $
Let us now use a known formula that is $ \sin a\sin b - \cos a\cos b = \cos \left( {a + b} \right) $ .
On substituting the values of $ a = 20^\circ $ and $ b = 70^\circ $ , we get,
$ \sin \left( {20^\circ } \right)\sin \left( {70^\circ } \right) - \cos \left( {20^\circ } \right)\cos \left( {70^\circ } \right) = \cos \left( {20^\circ + 70^\circ } \right) $
Since, we can write $ \cos \left( {20^\circ + 70^\circ } \right) $ in the form of,
$ \cos \left( {20^\circ + 70^\circ } \right) = \cos 90^\circ $
Now, we know the value for $ \cos 90^\circ $ that is $ \cos \left( {90} \right) = 0 $ .
So, we have taken the left hand side and proved that it is equal to the right hand side.
Hence, the value for the equation is $ \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ = 0 $ .
Note: Make sure the formula for the equation will not be same for all the equations. This can also be done by another method. If we take $ \cos \left( {20} \right) $ as $ \cos \left( {90 - 70} \right) $ and take $ \cos \left( {70} \right) $ as $ \cos \left( {90 - 20} \right) $ then by substituting and using the property that $ \cos \left( {90 - \theta } \right) $ is equal to $ \sin \left( \theta \right) $ we can prove the equation.
Complete step-by-step answer:
The given equation is $ \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ = 0 $ .
To prove the value of given equation, we will take left hand side term, that is,
$ \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ $
Let us now use a known formula that is $ \sin a\sin b - \cos a\cos b = \cos \left( {a + b} \right) $ .
On substituting the values of $ a = 20^\circ $ and $ b = 70^\circ $ , we get,
$ \sin \left( {20^\circ } \right)\sin \left( {70^\circ } \right) - \cos \left( {20^\circ } \right)\cos \left( {70^\circ } \right) = \cos \left( {20^\circ + 70^\circ } \right) $
Since, we can write $ \cos \left( {20^\circ + 70^\circ } \right) $ in the form of,
$ \cos \left( {20^\circ + 70^\circ } \right) = \cos 90^\circ $
Now, we know the value for $ \cos 90^\circ $ that is $ \cos \left( {90} \right) = 0 $ .
So, we have taken the left hand side and proved that it is equal to the right hand side.
Hence, the value for the equation is $ \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ = 0 $ .
Note: Make sure the formula for the equation will not be same for all the equations. This can also be done by another method. If we take $ \cos \left( {20} \right) $ as $ \cos \left( {90 - 70} \right) $ and take $ \cos \left( {70} \right) $ as $ \cos \left( {90 - 20} \right) $ then by substituting and using the property that $ \cos \left( {90 - \theta } \right) $ is equal to $ \sin \left( \theta \right) $ we can prove the equation.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
