
Prove that $ \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ = 0 $ .
Answer
587.7k+ views
Hint: Here, we will use the formula that $ \cos $ over $ a + b $ is equal to sum of product of $ \cos a $ and $ \cos b $ and product of $ - \sin a $ and $ \sin b $ . Then substitute the value of $ \cos $ to get the required answer.
Complete step-by-step answer:
The given equation is $ \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ = 0 $ .
To prove the value of given equation, we will take left hand side term, that is,
$ \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ $
Let us now use a known formula that is $ \sin a\sin b - \cos a\cos b = \cos \left( {a + b} \right) $ .
On substituting the values of $ a = 20^\circ $ and $ b = 70^\circ $ , we get,
$ \sin \left( {20^\circ } \right)\sin \left( {70^\circ } \right) - \cos \left( {20^\circ } \right)\cos \left( {70^\circ } \right) = \cos \left( {20^\circ + 70^\circ } \right) $
Since, we can write $ \cos \left( {20^\circ + 70^\circ } \right) $ in the form of,
$ \cos \left( {20^\circ + 70^\circ } \right) = \cos 90^\circ $
Now, we know the value for $ \cos 90^\circ $ that is $ \cos \left( {90} \right) = 0 $ .
So, we have taken the left hand side and proved that it is equal to the right hand side.
Hence, the value for the equation is $ \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ = 0 $ .
Note: Make sure the formula for the equation will not be same for all the equations. This can also be done by another method. If we take $ \cos \left( {20} \right) $ as $ \cos \left( {90 - 70} \right) $ and take $ \cos \left( {70} \right) $ as $ \cos \left( {90 - 20} \right) $ then by substituting and using the property that $ \cos \left( {90 - \theta } \right) $ is equal to $ \sin \left( \theta \right) $ we can prove the equation.
Complete step-by-step answer:
The given equation is $ \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ = 0 $ .
To prove the value of given equation, we will take left hand side term, that is,
$ \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ $
Let us now use a known formula that is $ \sin a\sin b - \cos a\cos b = \cos \left( {a + b} \right) $ .
On substituting the values of $ a = 20^\circ $ and $ b = 70^\circ $ , we get,
$ \sin \left( {20^\circ } \right)\sin \left( {70^\circ } \right) - \cos \left( {20^\circ } \right)\cos \left( {70^\circ } \right) = \cos \left( {20^\circ + 70^\circ } \right) $
Since, we can write $ \cos \left( {20^\circ + 70^\circ } \right) $ in the form of,
$ \cos \left( {20^\circ + 70^\circ } \right) = \cos 90^\circ $
Now, we know the value for $ \cos 90^\circ $ that is $ \cos \left( {90} \right) = 0 $ .
So, we have taken the left hand side and proved that it is equal to the right hand side.
Hence, the value for the equation is $ \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ = 0 $ .
Note: Make sure the formula for the equation will not be same for all the equations. This can also be done by another method. If we take $ \cos \left( {20} \right) $ as $ \cos \left( {90 - 70} \right) $ and take $ \cos \left( {70} \right) $ as $ \cos \left( {90 - 20} \right) $ then by substituting and using the property that $ \cos \left( {90 - \theta } \right) $ is equal to $ \sin \left( \theta \right) $ we can prove the equation.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

