
Prove that : ${{\sin }^{-1}}\dfrac{3}{5}+{{\sin }^{-1}}\dfrac{8}{17}={{\sin }^{-1}}\dfrac{77}{85}$.
Answer
613.5k+ views
Hint: We will be using the concept of inverse trigonometric functions. We will be using the formula of ${{\sin }^{-1}}x+{{\sin }^{-1}}y$.
Complete step by step answer:
Now, we have to prove that ${{\sin }^{-1}}\dfrac{3}{5}+{{\sin }^{-1}}\dfrac{8}{17}={{\sin }^{-1}}\dfrac{77}{85}$.
We will be taking the left hand side of the equation and prove it to be equal to the right hand side.
Now, taking L.H.S we have,
${{\sin }^{-1}}\dfrac{3}{5}+{{\sin }^{-1}}\dfrac{8}{17}...........\left( 1 \right)$
We know that ${{\sin }^{-1}}x+{{\sin }^{-1}}y$ is $={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right).........\left( 2 \right)$
Where $x,y\ge 0\ and\ {{x}^{2}}+{{y}^{2}}\le 1$.
We will be using (2) to solve (1), but first we have to check whether $x,y\ge 0\ and\ {{x}^{2}}+{{y}^{2}}\le 1$.
Comparing (1) and (2) we have,
$\begin{align}
& x=\dfrac{3}{5}>0 \\
& y=\dfrac{8}{17}>0 \\
& Also, \\
& {{x}^{2}}+{{y}^{2}}=\dfrac{9}{25}+\dfrac{64}{289} \\
& =\dfrac{9\times 289+64\times 25}{25\times 289} \\
& =\dfrac{4201}{25\times 289} \\
& \approx 0.5 \\
\end{align}$
So, this shows that equation (1) satisfy both the condition as $x,y\ge 0\ and\ {{x}^{2}}+{{y}^{2}}=0.5$ is less than 1.
Now, using equation (2),
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{3}{5} \right)+{{\sin }^{-1}}\left( \dfrac{8}{17} \right)={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{1-\dfrac{{{8}^{2}}}{{{17}^{2}}}}+\dfrac{8}{17}\sqrt{1-\dfrac{{{3}^{2}}}{{{5}^{2}}}} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{\dfrac{225}{172}}+\dfrac{8}{17}\sqrt{\dfrac{16}{{{5}^{2}}}} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{3}{5}\times \sqrt{\dfrac{{{15}^{2}}}{{{17}^{2}}}}+\dfrac{8}{17}\sqrt{\dfrac{{{4}^{2}}}{{{5}^{2}}}} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{3\times 15}{5\times 17}+\dfrac{8}{17}\times \dfrac{4}{5} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{9}{17}+\dfrac{32}{85} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{77}{85} \right) \\
\end{align}$
L.H.S = R.H.S
Hence Proved.
Note: These types of questions are calculation and formula based. So, remembering the formulas of trigonometric functions and checking calculations is a must.
Complete step by step answer:
Now, we have to prove that ${{\sin }^{-1}}\dfrac{3}{5}+{{\sin }^{-1}}\dfrac{8}{17}={{\sin }^{-1}}\dfrac{77}{85}$.
We will be taking the left hand side of the equation and prove it to be equal to the right hand side.
Now, taking L.H.S we have,
${{\sin }^{-1}}\dfrac{3}{5}+{{\sin }^{-1}}\dfrac{8}{17}...........\left( 1 \right)$
We know that ${{\sin }^{-1}}x+{{\sin }^{-1}}y$ is $={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right).........\left( 2 \right)$
Where $x,y\ge 0\ and\ {{x}^{2}}+{{y}^{2}}\le 1$.
We will be using (2) to solve (1), but first we have to check whether $x,y\ge 0\ and\ {{x}^{2}}+{{y}^{2}}\le 1$.
Comparing (1) and (2) we have,
$\begin{align}
& x=\dfrac{3}{5}>0 \\
& y=\dfrac{8}{17}>0 \\
& Also, \\
& {{x}^{2}}+{{y}^{2}}=\dfrac{9}{25}+\dfrac{64}{289} \\
& =\dfrac{9\times 289+64\times 25}{25\times 289} \\
& =\dfrac{4201}{25\times 289} \\
& \approx 0.5 \\
\end{align}$
So, this shows that equation (1) satisfy both the condition as $x,y\ge 0\ and\ {{x}^{2}}+{{y}^{2}}=0.5$ is less than 1.
Now, using equation (2),
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{3}{5} \right)+{{\sin }^{-1}}\left( \dfrac{8}{17} \right)={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{1-\dfrac{{{8}^{2}}}{{{17}^{2}}}}+\dfrac{8}{17}\sqrt{1-\dfrac{{{3}^{2}}}{{{5}^{2}}}} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{\dfrac{225}{172}}+\dfrac{8}{17}\sqrt{\dfrac{16}{{{5}^{2}}}} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{3}{5}\times \sqrt{\dfrac{{{15}^{2}}}{{{17}^{2}}}}+\dfrac{8}{17}\sqrt{\dfrac{{{4}^{2}}}{{{5}^{2}}}} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{3\times 15}{5\times 17}+\dfrac{8}{17}\times \dfrac{4}{5} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{9}{17}+\dfrac{32}{85} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{77}{85} \right) \\
\end{align}$
L.H.S = R.H.S
Hence Proved.
Note: These types of questions are calculation and formula based. So, remembering the formulas of trigonometric functions and checking calculations is a must.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

