
Prove that : ${{\sin }^{-1}}\dfrac{3}{5}+{{\sin }^{-1}}\dfrac{8}{17}={{\sin }^{-1}}\dfrac{77}{85}$.
Answer
599.7k+ views
Hint: We will be using the concept of inverse trigonometric functions. We will be using the formula of ${{\sin }^{-1}}x+{{\sin }^{-1}}y$.
Complete step by step answer:
Now, we have to prove that ${{\sin }^{-1}}\dfrac{3}{5}+{{\sin }^{-1}}\dfrac{8}{17}={{\sin }^{-1}}\dfrac{77}{85}$.
We will be taking the left hand side of the equation and prove it to be equal to the right hand side.
Now, taking L.H.S we have,
${{\sin }^{-1}}\dfrac{3}{5}+{{\sin }^{-1}}\dfrac{8}{17}...........\left( 1 \right)$
We know that ${{\sin }^{-1}}x+{{\sin }^{-1}}y$ is $={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right).........\left( 2 \right)$
Where $x,y\ge 0\ and\ {{x}^{2}}+{{y}^{2}}\le 1$.
We will be using (2) to solve (1), but first we have to check whether $x,y\ge 0\ and\ {{x}^{2}}+{{y}^{2}}\le 1$.
Comparing (1) and (2) we have,
$\begin{align}
& x=\dfrac{3}{5}>0 \\
& y=\dfrac{8}{17}>0 \\
& Also, \\
& {{x}^{2}}+{{y}^{2}}=\dfrac{9}{25}+\dfrac{64}{289} \\
& =\dfrac{9\times 289+64\times 25}{25\times 289} \\
& =\dfrac{4201}{25\times 289} \\
& \approx 0.5 \\
\end{align}$
So, this shows that equation (1) satisfy both the condition as $x,y\ge 0\ and\ {{x}^{2}}+{{y}^{2}}=0.5$ is less than 1.
Now, using equation (2),
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{3}{5} \right)+{{\sin }^{-1}}\left( \dfrac{8}{17} \right)={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{1-\dfrac{{{8}^{2}}}{{{17}^{2}}}}+\dfrac{8}{17}\sqrt{1-\dfrac{{{3}^{2}}}{{{5}^{2}}}} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{\dfrac{225}{172}}+\dfrac{8}{17}\sqrt{\dfrac{16}{{{5}^{2}}}} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{3}{5}\times \sqrt{\dfrac{{{15}^{2}}}{{{17}^{2}}}}+\dfrac{8}{17}\sqrt{\dfrac{{{4}^{2}}}{{{5}^{2}}}} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{3\times 15}{5\times 17}+\dfrac{8}{17}\times \dfrac{4}{5} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{9}{17}+\dfrac{32}{85} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{77}{85} \right) \\
\end{align}$
L.H.S = R.H.S
Hence Proved.
Note: These types of questions are calculation and formula based. So, remembering the formulas of trigonometric functions and checking calculations is a must.
Complete step by step answer:
Now, we have to prove that ${{\sin }^{-1}}\dfrac{3}{5}+{{\sin }^{-1}}\dfrac{8}{17}={{\sin }^{-1}}\dfrac{77}{85}$.
We will be taking the left hand side of the equation and prove it to be equal to the right hand side.
Now, taking L.H.S we have,
${{\sin }^{-1}}\dfrac{3}{5}+{{\sin }^{-1}}\dfrac{8}{17}...........\left( 1 \right)$
We know that ${{\sin }^{-1}}x+{{\sin }^{-1}}y$ is $={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right).........\left( 2 \right)$
Where $x,y\ge 0\ and\ {{x}^{2}}+{{y}^{2}}\le 1$.
We will be using (2) to solve (1), but first we have to check whether $x,y\ge 0\ and\ {{x}^{2}}+{{y}^{2}}\le 1$.
Comparing (1) and (2) we have,
$\begin{align}
& x=\dfrac{3}{5}>0 \\
& y=\dfrac{8}{17}>0 \\
& Also, \\
& {{x}^{2}}+{{y}^{2}}=\dfrac{9}{25}+\dfrac{64}{289} \\
& =\dfrac{9\times 289+64\times 25}{25\times 289} \\
& =\dfrac{4201}{25\times 289} \\
& \approx 0.5 \\
\end{align}$
So, this shows that equation (1) satisfy both the condition as $x,y\ge 0\ and\ {{x}^{2}}+{{y}^{2}}=0.5$ is less than 1.
Now, using equation (2),
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{3}{5} \right)+{{\sin }^{-1}}\left( \dfrac{8}{17} \right)={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{1-\dfrac{{{8}^{2}}}{{{17}^{2}}}}+\dfrac{8}{17}\sqrt{1-\dfrac{{{3}^{2}}}{{{5}^{2}}}} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{\dfrac{225}{172}}+\dfrac{8}{17}\sqrt{\dfrac{16}{{{5}^{2}}}} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{3}{5}\times \sqrt{\dfrac{{{15}^{2}}}{{{17}^{2}}}}+\dfrac{8}{17}\sqrt{\dfrac{{{4}^{2}}}{{{5}^{2}}}} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{3\times 15}{5\times 17}+\dfrac{8}{17}\times \dfrac{4}{5} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{9}{17}+\dfrac{32}{85} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{77}{85} \right) \\
\end{align}$
L.H.S = R.H.S
Hence Proved.
Note: These types of questions are calculation and formula based. So, remembering the formulas of trigonometric functions and checking calculations is a must.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

