
Prove that:
\[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Answer
574.5k+ views
Hint: We will start the problem by multiplying the terms and trying to simplify them. Then we arrange them to get our conventional form of \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\] and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\], as \[A = 3x\] and \[B = x\], we will apply the formula and simplify to get our desired result.
Complete step by step Answer:
To prove: \[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Now, our left hand side is,
\[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx\]
By multiplying we get,
\[ = \sin 3x\sin x + {\sin ^2}x + \cos 3x\cos x - {\cos ^2}x\]
On Arranging we get,
\[ = (\cos 3x\cos x + \sin 3x\sin x) - ({\cos ^2}x - {\sin ^2}x)\]
Now using, \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\]and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\], we get,
\[ = \cos (3x - x) - \cos 2x\]
On simplification we get,
\[ = \cos 2x - \cos 2x\]
\[ = 0\]
\[ = \]R.H.S
Hence, \[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Note: In this given problem we are dealing with trigonometric quantities. The formulas we are using here are, \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\] and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\]. First always open the brackets to simplify the given expression and then look for what pattern is it following and accordingly apply trigonometric formulas, to get the desired result.
Some other necessary trigonometric formulas are:
\[
\cos (A + B) = \cos A\cos B - \sin A\sin B \\
\cos (A - B) = \cos A\cos B + \sin A\sin B \\
\sin (A + B) = \sin A\cos B + \cos A\sin B \\
\sin (A - B) = \sin A\cos B - \cos A\sin B \\
\]
Complete step by step Answer:
To prove: \[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Now, our left hand side is,
\[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx\]
By multiplying we get,
\[ = \sin 3x\sin x + {\sin ^2}x + \cos 3x\cos x - {\cos ^2}x\]
On Arranging we get,
\[ = (\cos 3x\cos x + \sin 3x\sin x) - ({\cos ^2}x - {\sin ^2}x)\]
Now using, \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\]and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\], we get,
\[ = \cos (3x - x) - \cos 2x\]
On simplification we get,
\[ = \cos 2x - \cos 2x\]
\[ = 0\]
\[ = \]R.H.S
Hence, \[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Note: In this given problem we are dealing with trigonometric quantities. The formulas we are using here are, \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\] and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\]. First always open the brackets to simplify the given expression and then look for what pattern is it following and accordingly apply trigonometric formulas, to get the desired result.
Some other necessary trigonometric formulas are:
\[
\cos (A + B) = \cos A\cos B - \sin A\sin B \\
\cos (A - B) = \cos A\cos B + \sin A\sin B \\
\sin (A + B) = \sin A\cos B + \cos A\sin B \\
\sin (A - B) = \sin A\cos B - \cos A\sin B \\
\]
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

