
Prove that:
\[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Answer
589.5k+ views
Hint: We will start the problem by multiplying the terms and trying to simplify them. Then we arrange them to get our conventional form of \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\] and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\], as \[A = 3x\] and \[B = x\], we will apply the formula and simplify to get our desired result.
Complete step by step Answer:
To prove: \[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Now, our left hand side is,
\[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx\]
By multiplying we get,
\[ = \sin 3x\sin x + {\sin ^2}x + \cos 3x\cos x - {\cos ^2}x\]
On Arranging we get,
\[ = (\cos 3x\cos x + \sin 3x\sin x) - ({\cos ^2}x - {\sin ^2}x)\]
Now using, \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\]and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\], we get,
\[ = \cos (3x - x) - \cos 2x\]
On simplification we get,
\[ = \cos 2x - \cos 2x\]
\[ = 0\]
\[ = \]R.H.S
Hence, \[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Note: In this given problem we are dealing with trigonometric quantities. The formulas we are using here are, \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\] and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\]. First always open the brackets to simplify the given expression and then look for what pattern is it following and accordingly apply trigonometric formulas, to get the desired result.
Some other necessary trigonometric formulas are:
\[
\cos (A + B) = \cos A\cos B - \sin A\sin B \\
\cos (A - B) = \cos A\cos B + \sin A\sin B \\
\sin (A + B) = \sin A\cos B + \cos A\sin B \\
\sin (A - B) = \sin A\cos B - \cos A\sin B \\
\]
Complete step by step Answer:
To prove: \[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Now, our left hand side is,
\[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx\]
By multiplying we get,
\[ = \sin 3x\sin x + {\sin ^2}x + \cos 3x\cos x - {\cos ^2}x\]
On Arranging we get,
\[ = (\cos 3x\cos x + \sin 3x\sin x) - ({\cos ^2}x - {\sin ^2}x)\]
Now using, \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\]and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\], we get,
\[ = \cos (3x - x) - \cos 2x\]
On simplification we get,
\[ = \cos 2x - \cos 2x\]
\[ = 0\]
\[ = \]R.H.S
Hence, \[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Note: In this given problem we are dealing with trigonometric quantities. The formulas we are using here are, \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\] and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\]. First always open the brackets to simplify the given expression and then look for what pattern is it following and accordingly apply trigonometric formulas, to get the desired result.
Some other necessary trigonometric formulas are:
\[
\cos (A + B) = \cos A\cos B - \sin A\sin B \\
\cos (A - B) = \cos A\cos B + \sin A\sin B \\
\sin (A + B) = \sin A\cos B + \cos A\sin B \\
\sin (A - B) = \sin A\cos B - \cos A\sin B \\
\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

