
Prove that:
\[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Answer
509.4k+ views
Hint: We will start the problem by multiplying the terms and trying to simplify them. Then we arrange them to get our conventional form of \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\] and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\], as \[A = 3x\] and \[B = x\], we will apply the formula and simplify to get our desired result.
Complete step by step Answer:
To prove: \[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Now, our left hand side is,
\[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx\]
By multiplying we get,
\[ = \sin 3x\sin x + {\sin ^2}x + \cos 3x\cos x - {\cos ^2}x\]
On Arranging we get,
\[ = (\cos 3x\cos x + \sin 3x\sin x) - ({\cos ^2}x - {\sin ^2}x)\]
Now using, \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\]and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\], we get,
\[ = \cos (3x - x) - \cos 2x\]
On simplification we get,
\[ = \cos 2x - \cos 2x\]
\[ = 0\]
\[ = \]R.H.S
Hence, \[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Note: In this given problem we are dealing with trigonometric quantities. The formulas we are using here are, \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\] and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\]. First always open the brackets to simplify the given expression and then look for what pattern is it following and accordingly apply trigonometric formulas, to get the desired result.
Some other necessary trigonometric formulas are:
\[
\cos (A + B) = \cos A\cos B - \sin A\sin B \\
\cos (A - B) = \cos A\cos B + \sin A\sin B \\
\sin (A + B) = \sin A\cos B + \cos A\sin B \\
\sin (A - B) = \sin A\cos B - \cos A\sin B \\
\]
Complete step by step Answer:
To prove: \[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Now, our left hand side is,
\[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx\]
By multiplying we get,
\[ = \sin 3x\sin x + {\sin ^2}x + \cos 3x\cos x - {\cos ^2}x\]
On Arranging we get,
\[ = (\cos 3x\cos x + \sin 3x\sin x) - ({\cos ^2}x - {\sin ^2}x)\]
Now using, \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\]and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\], we get,
\[ = \cos (3x - x) - \cos 2x\]
On simplification we get,
\[ = \cos 2x - \cos 2x\]
\[ = 0\]
\[ = \]R.H.S
Hence, \[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]
Note: In this given problem we are dealing with trigonometric quantities. The formulas we are using here are, \[cos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB\] and \[\cos 2A = {\cos ^2}A - {\sin ^2}A\]. First always open the brackets to simplify the given expression and then look for what pattern is it following and accordingly apply trigonometric formulas, to get the desired result.
Some other necessary trigonometric formulas are:
\[
\cos (A + B) = \cos A\cos B - \sin A\sin B \\
\cos (A - B) = \cos A\cos B + \sin A\sin B \\
\sin (A + B) = \sin A\cos B + \cos A\sin B \\
\sin (A - B) = \sin A\cos B - \cos A\sin B \\
\]
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
