
Prove that: $\left( \sin \theta -\cos ec\theta \right)\left( \cos \theta -\sec \theta \right)=\dfrac{1}{\tan \theta +\cot \theta }$
Answer
607.5k+ views
Hint: Simplify the LHS and RHs of the given equation. To simplify LHS, write $\left( \sin \theta -\cos ec\theta \right)\times \left( \cos \theta -\sec \theta \right)$ as $\left( \cos ec\theta -\sin \theta \right)\times \left( \sec \theta -\cos \theta \right)$. Then convert $\cos ec\theta $ and $\sec \theta $ into terms of $\sin \theta $ and $\cos \theta $ respectively, using,
$\cos ec\theta =\dfrac{1}{\sin \theta }and\,\sec \theta =\dfrac{1}{\cos \theta }$, After that use-
${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$ and then simplify the LHS.
Complete step by step answer:
To simplify RHS, write
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }\,and\,\,\cot \theta =\dfrac{\cos \theta }{\sin \theta }$
And simplify the expression given in RHS. Using ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
We have to just simplify both side of the question.
Now taking LHS= $\left( \sin \theta -\cos ec\theta \right)\left( \cos \theta -\sec \theta \right)$.
Taking (-1) common from both sides, we get-
$\begin{align}
& LHS=\left( -1 \right)\left( \cos ec\theta -\sin \theta \right)\times \left( -1 \right)\left( \sec \theta -\cos \theta \right) \\
& LHS=\left( \cos ec\theta -\sin \theta \right)\left( \sec \theta -\cos \theta \right)\left[ \because \left( -1 \right)\left( -1 \right)=1 \right] \\
\end{align}$
Using $\cos ec\theta =\dfrac{1}{\sin \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$, we get
\[\begin{align}
& LHS=\left( \dfrac{1}{\sin \theta }-\sin \theta \right)\left( \dfrac{1}{\cos \theta }-\cos \theta \right) \\
& \,\,\,\,\,\,\,\,\,\,=\left( \dfrac{1-\sin \theta \left( \sin \theta \right)}{\sin \theta } \right)\left( \dfrac{1-\cos \theta \left( \cos \theta \right)}{\cos \theta } \right) \\
& \,\,\,\,\,\,\,\,\,\,=\left( \dfrac{1-{{\sin }^{2}}\theta }{\sin \theta } \right)\left( \dfrac{1-{{\cos }^{2}}\theta }{\cos \theta } \right) \\
\end{align}\]
As we know that $\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \\
\end{align}$
Hence, $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $ and
$1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $
Using, $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $ and $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ in the above, expression, we get-
\[\] $\begin{align}
& LHS=\left( \dfrac{{{\cos }^{2}}\theta }{\sin \theta } \right)\left( \dfrac{{{\sin }^{2}}\theta }{\cos \theta } \right) \\
& LHS=\left( \dfrac{{{\cos }^{2}}\theta }{\cos \theta } \right)\left( \dfrac{{{\sin }^{2}}\theta }{\sin \theta } \right) \\
& LHS=\left( \cos \theta \right)\left( \sin \theta \right).........................(i) \\
\end{align}$
Now, taking $RHS=\dfrac{1}{\tan \theta +\cot \theta }$
Using $\tan \theta =\dfrac{\sin \theta }{\cos \theta }\,and\,\,\,\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ in the above expression, we get-$\begin{align}
& RHS=\dfrac{1}{\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\sin \theta }} \\
& RHS=\dfrac{1}{\dfrac{\left( sin\theta \right)\left( \sin \theta \right)+\left( \cos \theta \right)\left( cos\theta \right)}{\left( \sin \theta \right)\left( \cos \theta \right)}} \\
& RHS=\dfrac{1}{\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\left( \sin \theta \right)\left( \cos \theta \right)}} \\
& RHS=\dfrac{1}{\dfrac{1}{\sin \theta \times \cos \theta }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ \operatorname{Sin}ce,{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \right] \\
& RHS=\sin \theta \times \cos \theta ...................(ii) \\
& \\
\end{align}$
From equation (i) and (ii), we can conclude LHS=RHS
Hence, $\left( \sin \theta -\cos ec\theta \right)\left( \cos \theta -\sec \theta \right)=\dfrac{1}{\tan \theta +\cot \theta }(proved)$
Note: Students can also solve this question by this method, given as-
$\begin{align}
& LHS=\left( \sin -\cos ec\theta \right)\left( \cos \theta -\sec \theta \right) \\
& =\left( \sin \theta -\dfrac{1}{\sin \theta } \right)\left( \cos \theta -\dfrac{1}{\cos \theta } \right) \\
& =\left( \dfrac{{{\sin }^{2}}\theta -1}{\sin \theta } \right)\left( \dfrac{{{\cos }^{2}}\theta -1}{\cos \theta } \right) \\
& =\left( \dfrac{{{\cos }^{2}}\theta }{\sin \theta } \right)\left( \dfrac{{{\sin }^{2}}\theta }{\cos \theta } \right) \\
& LHS=\left( \dfrac{{{\cos }^{2}}\theta }{\cos \theta } \right)\left( \dfrac{{{\sin }^{2}}\theta }{\sin \theta } \right) \\
& LHS=\left( \cos \theta \right)\left( \sin \theta \right) \\
\end{align}$
Multiplying and divide by $\tan \theta +\cot \theta $ in the above expression, we get-
$\begin{align}
& LHS=\left( \cos \theta \right)\left( \sin \theta \right)\times \dfrac{\left( tan\theta +\cot \theta \right)}{\left( \tan \theta +\cot \theta \right)} \\
& LHS=\dfrac{\left( \sin \theta \right)\left( \cos \theta \right)}{\left( \tan \theta +\cot \theta \right)}\times \left( \dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\sin \theta } \right) \\
& LHS=\dfrac{\sin \theta \times \cos \theta }{\tan \theta +\cot \theta }\times \left( \dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\sin \theta \times \cos \theta } \right) \\
& LHS=\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\tan \theta +\cot \theta } \\
& LHS=\dfrac{1}{\tan \theta +\cot \theta }\,\,\,\,\,\,\,\,\,\,\,\left( \because {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \right) \\
& \\
\end{align}$
$\therefore $ LHS=RHS
Hence,
$\left( \sin \theta -\cos ec\theta \right)\left( \cos \theta -\sec \theta \right)=\dfrac{1}{\tan \theta +\cot \theta }(proved)$
$\cos ec\theta =\dfrac{1}{\sin \theta }and\,\sec \theta =\dfrac{1}{\cos \theta }$, After that use-
${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$ and then simplify the LHS.
Complete step by step answer:
To simplify RHS, write
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }\,and\,\,\cot \theta =\dfrac{\cos \theta }{\sin \theta }$
And simplify the expression given in RHS. Using ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
We have to just simplify both side of the question.
Now taking LHS= $\left( \sin \theta -\cos ec\theta \right)\left( \cos \theta -\sec \theta \right)$.
Taking (-1) common from both sides, we get-
$\begin{align}
& LHS=\left( -1 \right)\left( \cos ec\theta -\sin \theta \right)\times \left( -1 \right)\left( \sec \theta -\cos \theta \right) \\
& LHS=\left( \cos ec\theta -\sin \theta \right)\left( \sec \theta -\cos \theta \right)\left[ \because \left( -1 \right)\left( -1 \right)=1 \right] \\
\end{align}$
Using $\cos ec\theta =\dfrac{1}{\sin \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$, we get
\[\begin{align}
& LHS=\left( \dfrac{1}{\sin \theta }-\sin \theta \right)\left( \dfrac{1}{\cos \theta }-\cos \theta \right) \\
& \,\,\,\,\,\,\,\,\,\,=\left( \dfrac{1-\sin \theta \left( \sin \theta \right)}{\sin \theta } \right)\left( \dfrac{1-\cos \theta \left( \cos \theta \right)}{\cos \theta } \right) \\
& \,\,\,\,\,\,\,\,\,\,=\left( \dfrac{1-{{\sin }^{2}}\theta }{\sin \theta } \right)\left( \dfrac{1-{{\cos }^{2}}\theta }{\cos \theta } \right) \\
\end{align}\]
As we know that $\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \\
\end{align}$
Hence, $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $ and
$1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $
Using, $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $ and $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ in the above, expression, we get-
\[\] $\begin{align}
& LHS=\left( \dfrac{{{\cos }^{2}}\theta }{\sin \theta } \right)\left( \dfrac{{{\sin }^{2}}\theta }{\cos \theta } \right) \\
& LHS=\left( \dfrac{{{\cos }^{2}}\theta }{\cos \theta } \right)\left( \dfrac{{{\sin }^{2}}\theta }{\sin \theta } \right) \\
& LHS=\left( \cos \theta \right)\left( \sin \theta \right).........................(i) \\
\end{align}$
Now, taking $RHS=\dfrac{1}{\tan \theta +\cot \theta }$
Using $\tan \theta =\dfrac{\sin \theta }{\cos \theta }\,and\,\,\,\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ in the above expression, we get-$\begin{align}
& RHS=\dfrac{1}{\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\sin \theta }} \\
& RHS=\dfrac{1}{\dfrac{\left( sin\theta \right)\left( \sin \theta \right)+\left( \cos \theta \right)\left( cos\theta \right)}{\left( \sin \theta \right)\left( \cos \theta \right)}} \\
& RHS=\dfrac{1}{\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\left( \sin \theta \right)\left( \cos \theta \right)}} \\
& RHS=\dfrac{1}{\dfrac{1}{\sin \theta \times \cos \theta }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ \operatorname{Sin}ce,{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \right] \\
& RHS=\sin \theta \times \cos \theta ...................(ii) \\
& \\
\end{align}$
From equation (i) and (ii), we can conclude LHS=RHS
Hence, $\left( \sin \theta -\cos ec\theta \right)\left( \cos \theta -\sec \theta \right)=\dfrac{1}{\tan \theta +\cot \theta }(proved)$
Note: Students can also solve this question by this method, given as-
$\begin{align}
& LHS=\left( \sin -\cos ec\theta \right)\left( \cos \theta -\sec \theta \right) \\
& =\left( \sin \theta -\dfrac{1}{\sin \theta } \right)\left( \cos \theta -\dfrac{1}{\cos \theta } \right) \\
& =\left( \dfrac{{{\sin }^{2}}\theta -1}{\sin \theta } \right)\left( \dfrac{{{\cos }^{2}}\theta -1}{\cos \theta } \right) \\
& =\left( \dfrac{{{\cos }^{2}}\theta }{\sin \theta } \right)\left( \dfrac{{{\sin }^{2}}\theta }{\cos \theta } \right) \\
& LHS=\left( \dfrac{{{\cos }^{2}}\theta }{\cos \theta } \right)\left( \dfrac{{{\sin }^{2}}\theta }{\sin \theta } \right) \\
& LHS=\left( \cos \theta \right)\left( \sin \theta \right) \\
\end{align}$
Multiplying and divide by $\tan \theta +\cot \theta $ in the above expression, we get-
$\begin{align}
& LHS=\left( \cos \theta \right)\left( \sin \theta \right)\times \dfrac{\left( tan\theta +\cot \theta \right)}{\left( \tan \theta +\cot \theta \right)} \\
& LHS=\dfrac{\left( \sin \theta \right)\left( \cos \theta \right)}{\left( \tan \theta +\cot \theta \right)}\times \left( \dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\sin \theta } \right) \\
& LHS=\dfrac{\sin \theta \times \cos \theta }{\tan \theta +\cot \theta }\times \left( \dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\sin \theta \times \cos \theta } \right) \\
& LHS=\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\tan \theta +\cot \theta } \\
& LHS=\dfrac{1}{\tan \theta +\cot \theta }\,\,\,\,\,\,\,\,\,\,\,\left( \because {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \right) \\
& \\
\end{align}$
$\therefore $ LHS=RHS
Hence,
$\left( \sin \theta -\cos ec\theta \right)\left( \cos \theta -\sec \theta \right)=\dfrac{1}{\tan \theta +\cot \theta }(proved)$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

