
Prove that ${\left( {\sin A + \operatorname{cosec} A} \right)^2} + {\left( {\cos A + \sec A} \right)^2} = 7 + {\tan ^2}A + {\cot ^2}A$ .
Answer
581.7k+ views
Hint:
Firstly, take the L.H.S. of the given equation into consideration.
Then, expand the terms ${\left( {\sin A + \operatorname{cosec} A} \right)^2}$ and ${\left( {\cos A + \sec A} \right)^2}$ .
Finally, apply the properties of trigonometry as required in the L.H.S. of the question to prove it equal to the R.H.S. of the question.
Complete step by step solution:
To prove ${\left( {\sin A + \operatorname{cosec} A} \right)^2} + {\left( {\cos A + \sec A} \right)^2} = 7 + {\tan ^2}A + {\cot ^2}A$ , we will take L.H.S. and solve it further to prove it equal to R.H.S.
$\therefore $ L.H.S. $ = {\left( {\sin A + \operatorname{cosec} A} \right)^2} + {\left( {\cos A + \sec A} \right)^2}$
Now, expanding ${\left( {\sin A + \operatorname{cosec} A} \right)^2}$ and ${\left( {\cos A + \sec A} \right)^2}$ .
$\therefore $ L.H.S. $ = {\sin ^2}A + {\operatorname{cosec} ^2}A + 2\sin A\operatorname{cosec} A + {\cos ^2}A + {\sec ^2}A + 2\cos A\sec A$
Also, ${\sin ^2}A + {\cos ^2}A = 1$ , $\sin A\operatorname{cosec} A = 1$ and $\cos A\sec A = 1$ .
$\therefore $ L.H.S. $ = 1 + 2 + 2 + {\operatorname{cosec} ^2}A + {\sec ^2}A$
And ${\operatorname{cosec} ^2}A = 1 + {\cot ^2}A$ and ${\sec ^2}A = 1 + {\tan ^2}A$ .
$\therefore $ L.H.S. $ = 5 + 1 + {\cot ^2}A + 1 + {\tan ^2}A$
$ = 7 + {\tan ^2}A + {\cot ^2}A$
$ = $ R.H.S.
Hence, proved that ${\left( {\sin A + \operatorname{cosec} A} \right)^2} + {\left( {\cos A + \sec A} \right)^2} = 7 + {\tan ^2}A + {\cot ^2}A$.
Note:
Some properties of trigonometry:
\[
{\sin ^2}A + {\cos ^2}A = 1 \\
{\tan ^2}A + {\sec ^2}A = 1 \\
\cos e{c^2}A + {\cot ^2} = 1 \\
\sin A\cos ecA = 1 \\
\cos A\sec A = 1 \\
\tan A\cot A = 1 \\
\]
Firstly, take the L.H.S. of the given equation into consideration.
Then, expand the terms ${\left( {\sin A + \operatorname{cosec} A} \right)^2}$ and ${\left( {\cos A + \sec A} \right)^2}$ .
Finally, apply the properties of trigonometry as required in the L.H.S. of the question to prove it equal to the R.H.S. of the question.
Complete step by step solution:
To prove ${\left( {\sin A + \operatorname{cosec} A} \right)^2} + {\left( {\cos A + \sec A} \right)^2} = 7 + {\tan ^2}A + {\cot ^2}A$ , we will take L.H.S. and solve it further to prove it equal to R.H.S.
$\therefore $ L.H.S. $ = {\left( {\sin A + \operatorname{cosec} A} \right)^2} + {\left( {\cos A + \sec A} \right)^2}$
Now, expanding ${\left( {\sin A + \operatorname{cosec} A} \right)^2}$ and ${\left( {\cos A + \sec A} \right)^2}$ .
$\therefore $ L.H.S. $ = {\sin ^2}A + {\operatorname{cosec} ^2}A + 2\sin A\operatorname{cosec} A + {\cos ^2}A + {\sec ^2}A + 2\cos A\sec A$
Also, ${\sin ^2}A + {\cos ^2}A = 1$ , $\sin A\operatorname{cosec} A = 1$ and $\cos A\sec A = 1$ .
$\therefore $ L.H.S. $ = 1 + 2 + 2 + {\operatorname{cosec} ^2}A + {\sec ^2}A$
And ${\operatorname{cosec} ^2}A = 1 + {\cot ^2}A$ and ${\sec ^2}A = 1 + {\tan ^2}A$ .
$\therefore $ L.H.S. $ = 5 + 1 + {\cot ^2}A + 1 + {\tan ^2}A$
$ = 7 + {\tan ^2}A + {\cot ^2}A$
$ = $ R.H.S.
Hence, proved that ${\left( {\sin A + \operatorname{cosec} A} \right)^2} + {\left( {\cos A + \sec A} \right)^2} = 7 + {\tan ^2}A + {\cot ^2}A$.
Note:
Some properties of trigonometry:
\[
{\sin ^2}A + {\cos ^2}A = 1 \\
{\tan ^2}A + {\sec ^2}A = 1 \\
\cos e{c^2}A + {\cot ^2} = 1 \\
\sin A\cos ecA = 1 \\
\cos A\sec A = 1 \\
\tan A\cot A = 1 \\
\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

