
Prove that: ${\left( {\dfrac{{{x^a}}}{{{x^b}}}} \right)^c} \times {\left( {\dfrac{{{x^b}}}{{{x^c}}}} \right)^a} \times {\left( {\dfrac{{{x^c}}}{{{x^a}}}} \right)^b} = 1$
Answer
564.9k+ views
Hint: We will first of all mention some formulas and identities which are going to be used for the solution of the above given question and then use them to prove the required..
Complete answer:
We know that we have some formulas given by the following expressions:-
$ \Rightarrow \dfrac{{{u^x}}}{{{u^y}}} = {u^{x - y}}$ ……………(1)
$ \Rightarrow {\left( {{a^b}} \right)^c} = {a^{bc}}$ …………..(2)
$ \Rightarrow \left( {{a^b}} \right) \times \left( {{a^c}} \right) = {a^{b + c}}$ …………..(3)
Now, we are given the left hand side as the expression: ${\left( {\dfrac{{{x^a}}}{{{x^b}}}} \right)^c} \times {\left( {\dfrac{{{x^b}}}{{{x^c}}}} \right)^a} \times {\left( {\dfrac{{{x^c}}}{{{x^a}}}} \right)^b}$
Let us assume that $u = {\left( {\dfrac{{{x^a}}}{{{x^b}}}} \right)^c},v = {\left( {\dfrac{{{x^b}}}{{{x^c}}}} \right)^a}$ and $w = {\left( {\dfrac{{{x^c}}}{{{x^a}}}} \right)^b}$
Now, we will first of all consider u only.
We have $u = {\left( {\dfrac{{{x^a}}}{{{x^b}}}} \right)^c}$
Using the formula in equation (1), we can write the above expression as following:-
$ \Rightarrow u = {\left( {{x^{a - b}}} \right)^c}$
Using the formula in equation (2), we can write the above expression as following:-
$ \Rightarrow u = {x^{c\left( {a - b} \right)}}$
Simplifying the powers on top, we will get:-
$ \Rightarrow u = {x^{ca - cb}}$ ………………..(4)
Now, let us consider v only.
We have $v = {\left( {\dfrac{{{x^b}}}{{{x^c}}}} \right)^a}$
Using the formula in equation (1), we can write the above expression as following:-
$ \Rightarrow v = {\left( {{x^{b - c}}} \right)^a}$
Using the formula in equation (2), we can write the above expression as following:-
$ \Rightarrow v = {x^{a\left( {b - c} \right)}}$
Simplifying the powers on top, we will get:-
$ \Rightarrow v = {x^{ab - ac}}$ ………………..(5)
Now, let us consider w only.
We have $w = {\left( {\dfrac{{{x^c}}}{{{x^a}}}} \right)^b}$
Using the formula in equation (1), we can write the above expression as following:-
$ \Rightarrow w = {\left( {{x^{c - a}}} \right)^b}$
Using the formula in equation (2), we can write the above expression as following:-
$ \Rightarrow w = {x^{b\left( {c - a} \right)}}$
Simplifying the powers on top, we will get:-
$ \Rightarrow w = {x^{bc - ba}}$ ………………..(6)
Now, our left hand side was u.v.w. So, if we use the equations (4), (5) and (6), we will then obtain the following expression:-
$ \Rightarrow $L. H. S. = $u \times v \times w = {x^{ca - cb}} \times {x^{ab - ac}} \times {x^{bc - ba}}$
Now, we will use the equation number (3) in the above derived expression to get the following expression:-
$ \Rightarrow $L. H. S. = ${x^{ca - cb + ab - ac + bc - ba}}$
Simplifying the power above, we will then obtain:-
$ \Rightarrow $L. H. S. = ${x^0}$ = 1 = R. H. S.
Note:
The students must note that any real number when raised to the power 0 will always be equal to 1, no matter what. Therefore, in the last step we had ${x^0} = 1$.
The students must commit to memory the following formulas:-
$ \Rightarrow \dfrac{{{u^x}}}{{{u^y}}} = {u^{x - y}}$
$ \Rightarrow {\left( {{a^b}} \right)^c} = {a^{bc}}$
$ \Rightarrow \left( {{a^b}} \right) \times \left( {{a^c}} \right) = {a^{b + c}}$
Complete answer:
We know that we have some formulas given by the following expressions:-
$ \Rightarrow \dfrac{{{u^x}}}{{{u^y}}} = {u^{x - y}}$ ……………(1)
$ \Rightarrow {\left( {{a^b}} \right)^c} = {a^{bc}}$ …………..(2)
$ \Rightarrow \left( {{a^b}} \right) \times \left( {{a^c}} \right) = {a^{b + c}}$ …………..(3)
Now, we are given the left hand side as the expression: ${\left( {\dfrac{{{x^a}}}{{{x^b}}}} \right)^c} \times {\left( {\dfrac{{{x^b}}}{{{x^c}}}} \right)^a} \times {\left( {\dfrac{{{x^c}}}{{{x^a}}}} \right)^b}$
Let us assume that $u = {\left( {\dfrac{{{x^a}}}{{{x^b}}}} \right)^c},v = {\left( {\dfrac{{{x^b}}}{{{x^c}}}} \right)^a}$ and $w = {\left( {\dfrac{{{x^c}}}{{{x^a}}}} \right)^b}$
Now, we will first of all consider u only.
We have $u = {\left( {\dfrac{{{x^a}}}{{{x^b}}}} \right)^c}$
Using the formula in equation (1), we can write the above expression as following:-
$ \Rightarrow u = {\left( {{x^{a - b}}} \right)^c}$
Using the formula in equation (2), we can write the above expression as following:-
$ \Rightarrow u = {x^{c\left( {a - b} \right)}}$
Simplifying the powers on top, we will get:-
$ \Rightarrow u = {x^{ca - cb}}$ ………………..(4)
Now, let us consider v only.
We have $v = {\left( {\dfrac{{{x^b}}}{{{x^c}}}} \right)^a}$
Using the formula in equation (1), we can write the above expression as following:-
$ \Rightarrow v = {\left( {{x^{b - c}}} \right)^a}$
Using the formula in equation (2), we can write the above expression as following:-
$ \Rightarrow v = {x^{a\left( {b - c} \right)}}$
Simplifying the powers on top, we will get:-
$ \Rightarrow v = {x^{ab - ac}}$ ………………..(5)
Now, let us consider w only.
We have $w = {\left( {\dfrac{{{x^c}}}{{{x^a}}}} \right)^b}$
Using the formula in equation (1), we can write the above expression as following:-
$ \Rightarrow w = {\left( {{x^{c - a}}} \right)^b}$
Using the formula in equation (2), we can write the above expression as following:-
$ \Rightarrow w = {x^{b\left( {c - a} \right)}}$
Simplifying the powers on top, we will get:-
$ \Rightarrow w = {x^{bc - ba}}$ ………………..(6)
Now, our left hand side was u.v.w. So, if we use the equations (4), (5) and (6), we will then obtain the following expression:-
$ \Rightarrow $L. H. S. = $u \times v \times w = {x^{ca - cb}} \times {x^{ab - ac}} \times {x^{bc - ba}}$
Now, we will use the equation number (3) in the above derived expression to get the following expression:-
$ \Rightarrow $L. H. S. = ${x^{ca - cb + ab - ac + bc - ba}}$
Simplifying the power above, we will then obtain:-
$ \Rightarrow $L. H. S. = ${x^0}$ = 1 = R. H. S.
Note:
The students must note that any real number when raised to the power 0 will always be equal to 1, no matter what. Therefore, in the last step we had ${x^0} = 1$.
The students must commit to memory the following formulas:-
$ \Rightarrow \dfrac{{{u^x}}}{{{u^y}}} = {u^{x - y}}$
$ \Rightarrow {\left( {{a^b}} \right)^c} = {a^{bc}}$
$ \Rightarrow \left( {{a^b}} \right) \times \left( {{a^c}} \right) = {a^{b + c}}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

