
Prove that \[{{\left( a+b \right)}^{5}}-{{a}^{5}}-{{b}^{5}}=5ab\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]
Answer
576.6k+ views
Hint: We solve this problem first taking the LHS and expanding the power by using the binomial theorem. The binomial theorem states that
\[{{\left( x+y \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}.{{x}^{n-r}}.{{y}^{r}}}\]
Where, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
By using this binomial theorem we expand the term \[{{\left( a+b \right)}^{5}}\] and then rearrange the terms and take the common terms out to get the RHS which proves the required result.
Complete step by step answer:
We are asked to prove
\[\Rightarrow {{\left( a+b \right)}^{5}}-{{a}^{5}}-{{b}^{5}}=5ab\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]
Let us take the LHS as follows
\[\Rightarrow LHS={{\left( a+b \right)}^{5}}-{{a}^{5}}-{{b}^{5}}......equation(i)\]
We know that the binomial theorem states that
\[{{\left( x+y \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}.{{a}^{n-r}}.{{b}^{r}}}\]
By using the above formula let us find the value of \[{{\left( a+b \right)}^{5}}\] then we get’
\[\Rightarrow {{\left( a+b \right)}^{5}}=\sum\limits_{r=0}^{5}{{}^{5}{{C}_{r}}.{{a}^{5-r}}.{{b}^{r}}}\]
Now by expanding the summation to all terms we get
\[\Rightarrow {{\left( a+b \right)}^{5}}={}^{5}{{C}_{0}}.{{a}^{5-0}}.{{b}^{0}}+{}^{5}{{C}_{1}}.{{a}^{5-1}}.{{b}^{1}}+{}^{5}{{C}_{2}}.{{a}^{5-2}}.{{b}^{2}}+{}^{5}{{C}_{3}}.{{a}^{5-3}}.{{b}^{3}}+{}^{5}{{C}_{4}}.{{a}^{5-4}}.{{b}^{4}}+{}^{5}{{C}_{5}}.{{a}^{5-5}}.{{b}^{5}}\]
We know that the formula of combination as
\[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
By using the above formula we get
\[\Rightarrow {{\left( a+b \right)}^{5}}={{a}^{5}}+5{{a}^{4}}b+10{{a}^{3}}{{b}^{2}}+10{{a}^{2}}{{b}^{3}}+5a{{b}^{4}}+{{b}^{5}}\]
Now by substituting the value of \[{{\left( a+b \right)}^{5}}\] in equation (i) we get
\[\begin{align}
& \Rightarrow LHS={{a}^{5}}+5{{a}^{4}}b+10{{a}^{3}}{{b}^{2}}+10{{a}^{2}}{{b}^{3}}+5a{{b}^{4}}+{{b}^{5}}-{{a}^{5}}-{{b}^{5}} \\
& \Rightarrow LHS=5{{a}^{4}}b+10{{a}^{3}}{{b}^{2}}+10{{a}^{2}}{{b}^{3}}+5a{{b}^{4}} \\
\end{align}\]
Now, by taking the common terms out from the above equation we get
\[\Rightarrow LHS=5ab\left( {{a}^{3}}+{{b}^{3}}+2ab\left( a+b \right) \right)\]
We know that the formula of algebra that is
By using this formula in above equation we get
\[\begin{align}
& \Rightarrow LHS=5ab\left[ \left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)+2ab\left( a+b \right) \right] \\
& \Rightarrow LHS=5ab\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}}+2ab \right) \\
& \Rightarrow LHS=5ab\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right) \\
\end{align}\]
Now let us take the RHS as
\[\begin{align}
& \Rightarrow RHS=5ab\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right) \\
& \Rightarrow RHS=LHS \\
\end{align}\]
Hence the required result has been proved that is
\[{{\left( a+b \right)}^{5}}-{{a}^{5}}-{{b}^{5}}=5ab\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]
Note: We can solve this problem in another way.
Here, we have the LHS as
\[\Rightarrow LHS=5{{a}^{4}}b+10{{a}^{3}}{{b}^{2}}+10{{a}^{2}}{{b}^{3}}+5a{{b}^{4}}\]
If we don’t get any idea of taking the common terms then leave the LHS as it is that is
\[\Rightarrow LHS=5{{a}^{4}}b+10{{a}^{3}}{{b}^{2}}+10{{a}^{2}}{{b}^{3}}+5a{{b}^{4}}\]
Now let us take the RHS as
\[\Rightarrow RHS=5ab\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]
Now, by multiplying the terms in above equation we get
\[\Rightarrow RHS=5ab\left( {{a}^{3}}+{{a}^{2}}b+a{{b}^{2}}+{{a}^{2}}b+a{{b}^{2}}+{{b}^{3}} \right)\]
Now by taking the term \[5ab\] into the brackets and adding the same terms we get
\[\begin{align}
& \Rightarrow RHS=5{{a}^{4}}b+10{{a}^{3}}{{b}^{2}}+10{{a}^{2}}{{b}^{3}}+5a{{b}^{4}} \\
& \Rightarrow RHS=LHS \\
\end{align}\]
Hence the required result has been proved that is
\[{{\left( a+b \right)}^{5}}-{{a}^{5}}-{{b}^{5}}=5ab\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]
By solving this method also the correct answer.
\[{{\left( x+y \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}.{{x}^{n-r}}.{{y}^{r}}}\]
Where, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
By using this binomial theorem we expand the term \[{{\left( a+b \right)}^{5}}\] and then rearrange the terms and take the common terms out to get the RHS which proves the required result.
Complete step by step answer:
We are asked to prove
\[\Rightarrow {{\left( a+b \right)}^{5}}-{{a}^{5}}-{{b}^{5}}=5ab\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]
Let us take the LHS as follows
\[\Rightarrow LHS={{\left( a+b \right)}^{5}}-{{a}^{5}}-{{b}^{5}}......equation(i)\]
We know that the binomial theorem states that
\[{{\left( x+y \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}.{{a}^{n-r}}.{{b}^{r}}}\]
By using the above formula let us find the value of \[{{\left( a+b \right)}^{5}}\] then we get’
\[\Rightarrow {{\left( a+b \right)}^{5}}=\sum\limits_{r=0}^{5}{{}^{5}{{C}_{r}}.{{a}^{5-r}}.{{b}^{r}}}\]
Now by expanding the summation to all terms we get
\[\Rightarrow {{\left( a+b \right)}^{5}}={}^{5}{{C}_{0}}.{{a}^{5-0}}.{{b}^{0}}+{}^{5}{{C}_{1}}.{{a}^{5-1}}.{{b}^{1}}+{}^{5}{{C}_{2}}.{{a}^{5-2}}.{{b}^{2}}+{}^{5}{{C}_{3}}.{{a}^{5-3}}.{{b}^{3}}+{}^{5}{{C}_{4}}.{{a}^{5-4}}.{{b}^{4}}+{}^{5}{{C}_{5}}.{{a}^{5-5}}.{{b}^{5}}\]
We know that the formula of combination as
\[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
By using the above formula we get
\[\Rightarrow {{\left( a+b \right)}^{5}}={{a}^{5}}+5{{a}^{4}}b+10{{a}^{3}}{{b}^{2}}+10{{a}^{2}}{{b}^{3}}+5a{{b}^{4}}+{{b}^{5}}\]
Now by substituting the value of \[{{\left( a+b \right)}^{5}}\] in equation (i) we get
\[\begin{align}
& \Rightarrow LHS={{a}^{5}}+5{{a}^{4}}b+10{{a}^{3}}{{b}^{2}}+10{{a}^{2}}{{b}^{3}}+5a{{b}^{4}}+{{b}^{5}}-{{a}^{5}}-{{b}^{5}} \\
& \Rightarrow LHS=5{{a}^{4}}b+10{{a}^{3}}{{b}^{2}}+10{{a}^{2}}{{b}^{3}}+5a{{b}^{4}} \\
\end{align}\]
Now, by taking the common terms out from the above equation we get
\[\Rightarrow LHS=5ab\left( {{a}^{3}}+{{b}^{3}}+2ab\left( a+b \right) \right)\]
We know that the formula of algebra that is
By using this formula in above equation we get
\[\begin{align}
& \Rightarrow LHS=5ab\left[ \left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)+2ab\left( a+b \right) \right] \\
& \Rightarrow LHS=5ab\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}}+2ab \right) \\
& \Rightarrow LHS=5ab\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right) \\
\end{align}\]
Now let us take the RHS as
\[\begin{align}
& \Rightarrow RHS=5ab\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right) \\
& \Rightarrow RHS=LHS \\
\end{align}\]
Hence the required result has been proved that is
\[{{\left( a+b \right)}^{5}}-{{a}^{5}}-{{b}^{5}}=5ab\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]
Note: We can solve this problem in another way.
Here, we have the LHS as
\[\Rightarrow LHS=5{{a}^{4}}b+10{{a}^{3}}{{b}^{2}}+10{{a}^{2}}{{b}^{3}}+5a{{b}^{4}}\]
If we don’t get any idea of taking the common terms then leave the LHS as it is that is
\[\Rightarrow LHS=5{{a}^{4}}b+10{{a}^{3}}{{b}^{2}}+10{{a}^{2}}{{b}^{3}}+5a{{b}^{4}}\]
Now let us take the RHS as
\[\Rightarrow RHS=5ab\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]
Now, by multiplying the terms in above equation we get
\[\Rightarrow RHS=5ab\left( {{a}^{3}}+{{a}^{2}}b+a{{b}^{2}}+{{a}^{2}}b+a{{b}^{2}}+{{b}^{3}} \right)\]
Now by taking the term \[5ab\] into the brackets and adding the same terms we get
\[\begin{align}
& \Rightarrow RHS=5{{a}^{4}}b+10{{a}^{3}}{{b}^{2}}+10{{a}^{2}}{{b}^{3}}+5a{{b}^{4}} \\
& \Rightarrow RHS=LHS \\
\end{align}\]
Hence the required result has been proved that is
\[{{\left( a+b \right)}^{5}}-{{a}^{5}}-{{b}^{5}}=5ab\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]
By solving this method also the correct answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

