
Prove that $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right) = 2$
Answer
540.6k+ views
Hint: In order to solve this question easily we will transform the given terms in sin and cos. In this question we have to prove that the left-hand side is equal to the right-hand side by using some basic formula and identity as discussed below.
Complete step-by-step solution:
Now, by using trigonometric identities we will easily solve the given problem.
We know that
$\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right) = 2$
Now, first we consider left hand side of the given expression
LHS = $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right)$
= $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right)$
converting above expression n terms of sinA or cosA
= $\left( {{\text{1 + }}\dfrac{{{\text{cosA}}}}{{{\text{sinA}}}}{\text{ - }}\dfrac{{\text{1}}}{{{\text{sinA}}}}} \right)\left( {{\text{1 + }}\dfrac{{{\text{sinA}}}}{{{\text{cosA}}}} + \dfrac{{\text{1}}}{{{\text{cosA}}}}} \right)$
= $\left( {{\text{1 + }}\dfrac{{{\text{cosA - 1}}}}{{{\text{sinA}}}}} \right)\left( {{\text{1 + }}\dfrac{{{\text{sinA + 1}}}}{{{\text{cosA}}}}} \right)$
Simplify above expressions as below-
= $\left( {\dfrac{{{\text{sinA + cosA - 1}}}}{{{\text{sinA}}}}} \right)\left( {\dfrac{{{\text{cosA + sinA + 1}}}}{{{\text{cosA}}}}} \right)$
= $\dfrac{{{{\left( {{\text{sinA + cosA}}} \right)}^{\text{2}}}{\text{ - 1}}}}{{{\text{sinAcosA}}}}$ As we know, $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right){\text{ = }}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)$
= $\dfrac{{{{\left( {{\text{sinA + cosA}}} \right)}^{\text{2}}}{\text{ - 1}}}}{{{\text{sinAcosA}}}}$ As we know, ${\left( {{\text{a + b}}} \right)^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ + 2ab}}$
= $\dfrac{{{\text{si}}{{\text{n}}^{\text{2}}}{\text{A + co}}{{\text{s}}^{\text{2}}}{\text{A + 2sinAcosA - 1}}}}{{{\text{sinAcosA}}}}$
As we know, ${\text{si}}{{\text{n}}^{\text{2}}}{\text{A + co}}{{\text{s}}^{\text{2}}}{\text{A = 1}}$
= $\dfrac{{{\text{1 + 2sinAcosA - 1}}}}{{{\text{sinAcosA}}}}$
= $\dfrac{{{\text{2sinAcosA}}}}{{{\text{sinAcosA}}}}$
= 2
Therefore, LHS=RHS.
Hence, proved $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right) = 2$
Note: We need to remember some basic formulas related to trigonometry. So that we easily understand the problem and apply these formulas. Some of them are mentioned below which we used in this question.
These Identities are given as-
\[{\text{sin}}\theta \] = $\dfrac{{\text{1}}}{{{\text{cosec}}\theta }}$
\[{\text{cos}}\theta \] = $\dfrac{{\text{1}}}{{{\text{sec}}\theta }}$
\[{\text{tan}}\theta \] = $\dfrac{{\text{1}}}{{{\text{cot}}\theta }}$
\[{\text{cot}}\theta \]= $\dfrac{{{\text{cos}}\theta }}{{{\text{sin}}\theta }}$
Complete step-by-step solution:
Now, by using trigonometric identities we will easily solve the given problem.
We know that
$\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right) = 2$
Now, first we consider left hand side of the given expression
LHS = $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right)$
= $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right)$
converting above expression n terms of sinA or cosA
= $\left( {{\text{1 + }}\dfrac{{{\text{cosA}}}}{{{\text{sinA}}}}{\text{ - }}\dfrac{{\text{1}}}{{{\text{sinA}}}}} \right)\left( {{\text{1 + }}\dfrac{{{\text{sinA}}}}{{{\text{cosA}}}} + \dfrac{{\text{1}}}{{{\text{cosA}}}}} \right)$
= $\left( {{\text{1 + }}\dfrac{{{\text{cosA - 1}}}}{{{\text{sinA}}}}} \right)\left( {{\text{1 + }}\dfrac{{{\text{sinA + 1}}}}{{{\text{cosA}}}}} \right)$
Simplify above expressions as below-
= $\left( {\dfrac{{{\text{sinA + cosA - 1}}}}{{{\text{sinA}}}}} \right)\left( {\dfrac{{{\text{cosA + sinA + 1}}}}{{{\text{cosA}}}}} \right)$
= $\dfrac{{{{\left( {{\text{sinA + cosA}}} \right)}^{\text{2}}}{\text{ - 1}}}}{{{\text{sinAcosA}}}}$ As we know, $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right){\text{ = }}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)$
= $\dfrac{{{{\left( {{\text{sinA + cosA}}} \right)}^{\text{2}}}{\text{ - 1}}}}{{{\text{sinAcosA}}}}$ As we know, ${\left( {{\text{a + b}}} \right)^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ + 2ab}}$
= $\dfrac{{{\text{si}}{{\text{n}}^{\text{2}}}{\text{A + co}}{{\text{s}}^{\text{2}}}{\text{A + 2sinAcosA - 1}}}}{{{\text{sinAcosA}}}}$
As we know, ${\text{si}}{{\text{n}}^{\text{2}}}{\text{A + co}}{{\text{s}}^{\text{2}}}{\text{A = 1}}$
= $\dfrac{{{\text{1 + 2sinAcosA - 1}}}}{{{\text{sinAcosA}}}}$
= $\dfrac{{{\text{2sinAcosA}}}}{{{\text{sinAcosA}}}}$
= 2
Therefore, LHS=RHS.
Hence, proved $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right) = 2$
Note: We need to remember some basic formulas related to trigonometry. So that we easily understand the problem and apply these formulas. Some of them are mentioned below which we used in this question.
These Identities are given as-
\[{\text{sin}}\theta \] = $\dfrac{{\text{1}}}{{{\text{cosec}}\theta }}$
\[{\text{cos}}\theta \] = $\dfrac{{\text{1}}}{{{\text{sec}}\theta }}$
\[{\text{tan}}\theta \] = $\dfrac{{\text{1}}}{{{\text{cot}}\theta }}$
\[{\text{cot}}\theta \]= $\dfrac{{{\text{cos}}\theta }}{{{\text{sin}}\theta }}$
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

