Answer
Verified
406.2k+ views
Hint: In order to solve this question easily we will transform the given terms in sin and cos. In this question we have to prove that the left-hand side is equal to the right-hand side by using some basic formula and identity as discussed below.
Complete step-by-step solution:
Now, by using trigonometric identities we will easily solve the given problem.
We know that
$\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right) = 2$
Now, first we consider left hand side of the given expression
LHS = $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right)$
= $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right)$
converting above expression n terms of sinA or cosA
= $\left( {{\text{1 + }}\dfrac{{{\text{cosA}}}}{{{\text{sinA}}}}{\text{ - }}\dfrac{{\text{1}}}{{{\text{sinA}}}}} \right)\left( {{\text{1 + }}\dfrac{{{\text{sinA}}}}{{{\text{cosA}}}} + \dfrac{{\text{1}}}{{{\text{cosA}}}}} \right)$
= $\left( {{\text{1 + }}\dfrac{{{\text{cosA - 1}}}}{{{\text{sinA}}}}} \right)\left( {{\text{1 + }}\dfrac{{{\text{sinA + 1}}}}{{{\text{cosA}}}}} \right)$
Simplify above expressions as below-
= $\left( {\dfrac{{{\text{sinA + cosA - 1}}}}{{{\text{sinA}}}}} \right)\left( {\dfrac{{{\text{cosA + sinA + 1}}}}{{{\text{cosA}}}}} \right)$
= $\dfrac{{{{\left( {{\text{sinA + cosA}}} \right)}^{\text{2}}}{\text{ - 1}}}}{{{\text{sinAcosA}}}}$ As we know, $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right){\text{ = }}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)$
= $\dfrac{{{{\left( {{\text{sinA + cosA}}} \right)}^{\text{2}}}{\text{ - 1}}}}{{{\text{sinAcosA}}}}$ As we know, ${\left( {{\text{a + b}}} \right)^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ + 2ab}}$
= $\dfrac{{{\text{si}}{{\text{n}}^{\text{2}}}{\text{A + co}}{{\text{s}}^{\text{2}}}{\text{A + 2sinAcosA - 1}}}}{{{\text{sinAcosA}}}}$
As we know, ${\text{si}}{{\text{n}}^{\text{2}}}{\text{A + co}}{{\text{s}}^{\text{2}}}{\text{A = 1}}$
= $\dfrac{{{\text{1 + 2sinAcosA - 1}}}}{{{\text{sinAcosA}}}}$
= $\dfrac{{{\text{2sinAcosA}}}}{{{\text{sinAcosA}}}}$
= 2
Therefore, LHS=RHS.
Hence, proved $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right) = 2$
Note: We need to remember some basic formulas related to trigonometry. So that we easily understand the problem and apply these formulas. Some of them are mentioned below which we used in this question.
These Identities are given as-
\[{\text{sin}}\theta \] = $\dfrac{{\text{1}}}{{{\text{cosec}}\theta }}$
\[{\text{cos}}\theta \] = $\dfrac{{\text{1}}}{{{\text{sec}}\theta }}$
\[{\text{tan}}\theta \] = $\dfrac{{\text{1}}}{{{\text{cot}}\theta }}$
\[{\text{cot}}\theta \]= $\dfrac{{{\text{cos}}\theta }}{{{\text{sin}}\theta }}$
Complete step-by-step solution:
Now, by using trigonometric identities we will easily solve the given problem.
We know that
$\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right) = 2$
Now, first we consider left hand side of the given expression
LHS = $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right)$
= $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right)$
converting above expression n terms of sinA or cosA
= $\left( {{\text{1 + }}\dfrac{{{\text{cosA}}}}{{{\text{sinA}}}}{\text{ - }}\dfrac{{\text{1}}}{{{\text{sinA}}}}} \right)\left( {{\text{1 + }}\dfrac{{{\text{sinA}}}}{{{\text{cosA}}}} + \dfrac{{\text{1}}}{{{\text{cosA}}}}} \right)$
= $\left( {{\text{1 + }}\dfrac{{{\text{cosA - 1}}}}{{{\text{sinA}}}}} \right)\left( {{\text{1 + }}\dfrac{{{\text{sinA + 1}}}}{{{\text{cosA}}}}} \right)$
Simplify above expressions as below-
= $\left( {\dfrac{{{\text{sinA + cosA - 1}}}}{{{\text{sinA}}}}} \right)\left( {\dfrac{{{\text{cosA + sinA + 1}}}}{{{\text{cosA}}}}} \right)$
= $\dfrac{{{{\left( {{\text{sinA + cosA}}} \right)}^{\text{2}}}{\text{ - 1}}}}{{{\text{sinAcosA}}}}$ As we know, $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right){\text{ = }}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)$
= $\dfrac{{{{\left( {{\text{sinA + cosA}}} \right)}^{\text{2}}}{\text{ - 1}}}}{{{\text{sinAcosA}}}}$ As we know, ${\left( {{\text{a + b}}} \right)^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ + 2ab}}$
= $\dfrac{{{\text{si}}{{\text{n}}^{\text{2}}}{\text{A + co}}{{\text{s}}^{\text{2}}}{\text{A + 2sinAcosA - 1}}}}{{{\text{sinAcosA}}}}$
As we know, ${\text{si}}{{\text{n}}^{\text{2}}}{\text{A + co}}{{\text{s}}^{\text{2}}}{\text{A = 1}}$
= $\dfrac{{{\text{1 + 2sinAcosA - 1}}}}{{{\text{sinAcosA}}}}$
= $\dfrac{{{\text{2sinAcosA}}}}{{{\text{sinAcosA}}}}$
= 2
Therefore, LHS=RHS.
Hence, proved $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right) = 2$
Note: We need to remember some basic formulas related to trigonometry. So that we easily understand the problem and apply these formulas. Some of them are mentioned below which we used in this question.
These Identities are given as-
\[{\text{sin}}\theta \] = $\dfrac{{\text{1}}}{{{\text{cosec}}\theta }}$
\[{\text{cos}}\theta \] = $\dfrac{{\text{1}}}{{{\text{sec}}\theta }}$
\[{\text{tan}}\theta \] = $\dfrac{{\text{1}}}{{{\text{cot}}\theta }}$
\[{\text{cot}}\theta \]= $\dfrac{{{\text{cos}}\theta }}{{{\text{sin}}\theta }}$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Give a reason for the establishment of the Mohammedan class 10 social science CBSE
What are the two main features of Himadri class 11 social science CBSE
The continent which does not touch the Mediterranean class 7 social science CBSE
India has form of democracy a Direct b Indirect c Presidential class 12 sst CBSE
which foreign country is closest to andaman islands class 10 social science CBSE
One cusec is equal to how many liters class 8 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which foreign country is closest to Andaman Islands class 11 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE