
Prove that: In a parallelogram, opposite angles are equal.
Answer
485.1k+ views
Hint: We know that the opposite sides of the parallelogram is parallel. Now drawing a transversal line AC, in the parallelogram ABCD, the alternate angle becomes equal and we get two different equations. Adding these both equations, at last , we prove that the opposite angles of the parallelogram are equal.
Complete step-by-step answer:
It is already given in the question that a parallelogram ABCD has AC as its one of the diagonal.
To prove:- $\angle $A = $\angle $C and
$\angle $B = $\angle $D.
Proof:- Opposite sides of parallelogram is parallel.
So, AB$\parallel $CD and AD$\parallel $BC.
Since, AB$\parallel $CD;
And AC is the transversal.
$\angle $BAC = $\angle $DCA ( They are the Alternate angles)
So,$\angle $ BAC = $\angle $DCA …(1)
Now, Since, AD$\parallel $BC;
And AC is the transversal.
$\angle $DAC = $\angle $BCA (They are the Alternate angles)
So, $\angle $DAC = $\angle $BCA ….(2)
Adding both the equations, that is equation (1) and (2) , we get;
$ \Rightarrow $$\angle $BAC + $\angle $DAC = $\angle $DCA + $\angle $BCA
$ \Rightarrow $ $\angle $BAD = $\angle $DCB.
$ \Rightarrow $ $\angle $A = $\angle $C.
In the similar way only;
We can prove that:- $\angle $ADC = $\angle $ABC
$ \Rightarrow $ $\angle $D = $\angle $ B.
Hence, it is proved that in a parallelogram , the opposite sides of parallelogram are equal.
Note: In order to solve this particular question, we need to memorize these properties of parallelogram:-
a.) The opposite sides are congruent.
b.) The opposite angles are congruent.
c.) The consecutive angles are supplementary.
d.) If anyone of the angles is a right angle, then all the other angles will be the right angle.
e.) The two diagonals bisect each other.
Complete step-by-step answer:

It is already given in the question that a parallelogram ABCD has AC as its one of the diagonal.
To prove:- $\angle $A = $\angle $C and
$\angle $B = $\angle $D.
Proof:- Opposite sides of parallelogram is parallel.
So, AB$\parallel $CD and AD$\parallel $BC.
Since, AB$\parallel $CD;
And AC is the transversal.
$\angle $BAC = $\angle $DCA ( They are the Alternate angles)
So,$\angle $ BAC = $\angle $DCA …(1)
Now, Since, AD$\parallel $BC;
And AC is the transversal.
$\angle $DAC = $\angle $BCA (They are the Alternate angles)
So, $\angle $DAC = $\angle $BCA ….(2)
Adding both the equations, that is equation (1) and (2) , we get;
$ \Rightarrow $$\angle $BAC + $\angle $DAC = $\angle $DCA + $\angle $BCA
$ \Rightarrow $ $\angle $BAD = $\angle $DCB.
$ \Rightarrow $ $\angle $A = $\angle $C.
In the similar way only;
We can prove that:- $\angle $ADC = $\angle $ABC
$ \Rightarrow $ $\angle $D = $\angle $ B.
Hence, it is proved that in a parallelogram , the opposite sides of parallelogram are equal.
Note: In order to solve this particular question, we need to memorize these properties of parallelogram:-
a.) The opposite sides are congruent.
b.) The opposite angles are congruent.
c.) The consecutive angles are supplementary.
d.) If anyone of the angles is a right angle, then all the other angles will be the right angle.
e.) The two diagonals bisect each other.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Questions & Answers - Ask your doubts

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Trending doubts
A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How do you prove that the diagonals of a rectangle class 10 maths CBSE
