
Prove that:
(i) ${}^{n}{{P}_{n}}={}^{n}{{P}_{n-1}}$
(ii) ${}^{n}{{P}_{r}}=n\cdot {}^{n-1}{{P}_{r-1}}$
(iii) ${}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}={}^{n}{{P}_{r}}$
Answer
606.6k+ views
Hint: For solving this question, we will use the formulas like ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ , $r!=r\times \left( r-1 \right)!$ and $0!=1$ to simplify the term on the left-hand side in each of the given part. Then, we solve further and prove the desired result easily.
Complete step-by-step answer:
Given:
We have to prove the following equations:
(i) ${}^{n}{{P}_{n}}={}^{n}{{P}_{n-1}}$
(ii) ${}^{n}{{P}_{r}}=n\cdot {}^{n-1}{{P}_{r-1}}$
(iii) ${}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}={}^{n}{{P}_{r}}$
Now, before we proceed we should know the following formulas and results:
$\begin{align}
& {}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}............\left( 1 \right) \\
& r!=r\times \left( r-1 \right)!..........\left( 2 \right) \\
& 0!=1........................\left( 3 \right) \\
\end{align}$
Now, we will solve for each part separately using the above formulas.
(i) ${}^{n}{{P}_{n}}={}^{n}{{P}_{n-1}}$
Now, we will use the formula from the equation (1) to simplify the term ${}^{n}{{P}_{n}}$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{\left( n-n \right)!} \\
& \Rightarrow {}^{n}{{P}_{n}}=\dfrac{n!}{0!} \\
\end{align}$
Now, we will put $0!=1$ from equation (3) in the above equation. Then,
${}^{n}{{P}_{n}}=\dfrac{n!}{1}$
Now, we will write $1=1!$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{1} \\
& \Rightarrow {}^{n}{{P}_{n}}=\dfrac{n!}{1!} \\
\end{align}$
Now, we will write $1!=\left( n-\left( n-1 \right) \right)!$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{1!} \\
& \Rightarrow {}^{n}{{P}_{n}}=\dfrac{n!}{\left( n-\left( n-1 \right) \right)!} \\
\end{align}$
Now, we will use the formula from the equation (1) to write $\dfrac{n!}{\left( n-\left( n-1 \right) \right)!}={}^{n}{{P}_{n-1}}$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{\left( n-\left( n-1 \right) \right)!} \\
& \Rightarrow {}^{n}{{P}_{n}}={}^{n}{{P}_{n-1}} \\
\end{align}$
Hence, proved.
(ii) ${}^{n}{{P}_{r}}=n\cdot {}^{n-1}{{P}_{r-1}}$
Now, we will use the formula from the equation (1) to simplify the term ${}^{n}{{P}_{r}}$ in the above equation. Then,
\[{}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}\]
Now, we will use the formula from the equation (2) to write $n!=n\times \left( n-1 \right)!$ in the above equation. Then,
\[\begin{align}
& {}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)!} \\
\end{align}\]
Now, we will write $\left( n-r \right)=\left( n-1-\left( r-1 \right) \right)$ in the above equation. Then,
\[\begin{align}
& {}^{n}{{P}_{r}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=n\times \dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
\end{align}\]
Now, we will use the formula from the equation (1) to write \[\dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!}={}^{n-1}{{P}_{r-1}}\] in the above equation. Then,
\[\begin{align}
& {}^{n}{{P}_{r}}=n\times \dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=n\times {}^{n-1}{{P}_{r-1}} \\
& \Rightarrow {}^{n}{{P}_{r}}=n\cdot {}^{n-1}{{P}_{r-1}} \\
\end{align}\]
Hence, proved.
(iii) ${}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}={}^{n}{{P}_{r}}$
Now, we will use the formula from the equation (1) to simplify the term ${}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}$ in the above equation. Then,$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-1-r \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left
( n-1 \right)!}{\left( n-r-1 \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-r \right)!} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\left( n-r \right)!=\left( n-r \right)\times \left( n-r-1 \right)!$ in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-r \right)\times \left( n-r-1 \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+\dfrac{r}{\left( n-r \right)}\times \dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!} \\
\end{align}$
Now, we will take $\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}$ common from each term in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+\dfrac{r}{\left( n-r \right)}\times \dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}\times \left[ 1+\dfrac{r}{\left( n-r \right)} \right] \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}\times \left[ \dfrac{n-r+r}{n-r} \right] \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}\times \dfrac{n}{\left( n-r \right)} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)\times \left( n-r-1 \right)!} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $n\times \left( n-1 \right)!=n!$ and $\left( n-r \right)\times \left( n-r-1 \right)!=\left( n-r \right)!$ in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)\times \left( n-r-1 \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n!}{\left( n-r \right)!} \\
\end{align}$
Now, we will use the formula from the equation (1) to write $\dfrac{n!}{\left( n-r \right)!}={}^{n}{{P}_{r}}$ in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}={}^{n}{{P}_{r}} \\
\end{align}$
Hence, proved.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to prove the desired result quickly in a correct way. After that, we should apply formulas like ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ and $r!=r\times \left( r-1 \right)!$ correctly in a proper sequence and solve without any mistake to prove the desired result easily. Moreover, we could have also proved the desired result by simplifying the term on the left-hand side and right-hand side separately using formulas like ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ and $r!=r\times \left( r-1 \right)!$ .
Complete step-by-step answer:
Given:
We have to prove the following equations:
(i) ${}^{n}{{P}_{n}}={}^{n}{{P}_{n-1}}$
(ii) ${}^{n}{{P}_{r}}=n\cdot {}^{n-1}{{P}_{r-1}}$
(iii) ${}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}={}^{n}{{P}_{r}}$
Now, before we proceed we should know the following formulas and results:
$\begin{align}
& {}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}............\left( 1 \right) \\
& r!=r\times \left( r-1 \right)!..........\left( 2 \right) \\
& 0!=1........................\left( 3 \right) \\
\end{align}$
Now, we will solve for each part separately using the above formulas.
(i) ${}^{n}{{P}_{n}}={}^{n}{{P}_{n-1}}$
Now, we will use the formula from the equation (1) to simplify the term ${}^{n}{{P}_{n}}$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{\left( n-n \right)!} \\
& \Rightarrow {}^{n}{{P}_{n}}=\dfrac{n!}{0!} \\
\end{align}$
Now, we will put $0!=1$ from equation (3) in the above equation. Then,
${}^{n}{{P}_{n}}=\dfrac{n!}{1}$
Now, we will write $1=1!$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{1} \\
& \Rightarrow {}^{n}{{P}_{n}}=\dfrac{n!}{1!} \\
\end{align}$
Now, we will write $1!=\left( n-\left( n-1 \right) \right)!$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{1!} \\
& \Rightarrow {}^{n}{{P}_{n}}=\dfrac{n!}{\left( n-\left( n-1 \right) \right)!} \\
\end{align}$
Now, we will use the formula from the equation (1) to write $\dfrac{n!}{\left( n-\left( n-1 \right) \right)!}={}^{n}{{P}_{n-1}}$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{\left( n-\left( n-1 \right) \right)!} \\
& \Rightarrow {}^{n}{{P}_{n}}={}^{n}{{P}_{n-1}} \\
\end{align}$
Hence, proved.
(ii) ${}^{n}{{P}_{r}}=n\cdot {}^{n-1}{{P}_{r-1}}$
Now, we will use the formula from the equation (1) to simplify the term ${}^{n}{{P}_{r}}$ in the above equation. Then,
\[{}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}\]
Now, we will use the formula from the equation (2) to write $n!=n\times \left( n-1 \right)!$ in the above equation. Then,
\[\begin{align}
& {}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)!} \\
\end{align}\]
Now, we will write $\left( n-r \right)=\left( n-1-\left( r-1 \right) \right)$ in the above equation. Then,
\[\begin{align}
& {}^{n}{{P}_{r}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=n\times \dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
\end{align}\]
Now, we will use the formula from the equation (1) to write \[\dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!}={}^{n-1}{{P}_{r-1}}\] in the above equation. Then,
\[\begin{align}
& {}^{n}{{P}_{r}}=n\times \dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=n\times {}^{n-1}{{P}_{r-1}} \\
& \Rightarrow {}^{n}{{P}_{r}}=n\cdot {}^{n-1}{{P}_{r-1}} \\
\end{align}\]
Hence, proved.
(iii) ${}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}={}^{n}{{P}_{r}}$
Now, we will use the formula from the equation (1) to simplify the term ${}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}$ in the above equation. Then,$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-1-r \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left
( n-1 \right)!}{\left( n-r-1 \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-r \right)!} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\left( n-r \right)!=\left( n-r \right)\times \left( n-r-1 \right)!$ in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-r \right)\times \left( n-r-1 \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+\dfrac{r}{\left( n-r \right)}\times \dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!} \\
\end{align}$
Now, we will take $\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}$ common from each term in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+\dfrac{r}{\left( n-r \right)}\times \dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}\times \left[ 1+\dfrac{r}{\left( n-r \right)} \right] \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}\times \left[ \dfrac{n-r+r}{n-r} \right] \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}\times \dfrac{n}{\left( n-r \right)} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)\times \left( n-r-1 \right)!} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $n\times \left( n-1 \right)!=n!$ and $\left( n-r \right)\times \left( n-r-1 \right)!=\left( n-r \right)!$ in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)\times \left( n-r-1 \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n!}{\left( n-r \right)!} \\
\end{align}$
Now, we will use the formula from the equation (1) to write $\dfrac{n!}{\left( n-r \right)!}={}^{n}{{P}_{r}}$ in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}={}^{n}{{P}_{r}} \\
\end{align}$
Hence, proved.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to prove the desired result quickly in a correct way. After that, we should apply formulas like ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ and $r!=r\times \left( r-1 \right)!$ correctly in a proper sequence and solve without any mistake to prove the desired result easily. Moreover, we could have also proved the desired result by simplifying the term on the left-hand side and right-hand side separately using formulas like ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ and $r!=r\times \left( r-1 \right)!$ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

