
Prove that expression $\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{\sin 16x}{16\sin x}$
Answer
514.2k+ views
Hint: In this question, you can use sine double angle formula. The sine double angle formula tells us that $\sin 2\theta $ is always equal to $2\sin \theta \cos \theta $. You can use this identity to rewrite expressions and prove.
Complete step-by-step answer:
Let us consider the L. H. S. $\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x$ and multiply and divide by the trigonometric sine function $\sin x$.
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{\sin x\cdot \cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x}{\sin x}\]
Now multiply and divided by 2, we get
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{2\sin x\cdot \cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x}{2\sin x}\]
The sine double angle formula tells us that $2\sin x\cos x$ is always equal to $\sin 2x$.
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{\sin 2x\cdot cox2x\cdot \cos 4x\cdot \cos 8x}{2\sin x}\]
Again, multiply and divided by 2, we get
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{2\sin 2x\cdot cox2x\cdot \cos 4x\cdot \cos 8x}{2\times 2\times \sin x}\]
The sine double angle formula tells us that $2\sin 2x\cos 2x$ is always equal to $\sin 4x$.
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{\sin 4x\cdot \cos 4x\cdot \cos 8x}{2\times 2\times \sin x}\]
Also, multiply and divided by 2, we get
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{2\sin 4x\cdot \cos 4x\cdot \cos 8x}{2\times 2\times 2\times \sin x}\]
The sine double angle formula tells us that $2\sin 4x\cos 4x$ is always equal to $\sin 8x$.
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{\sin 8x\cdot \cos 8x}{2\times 2\times 2\times \sin x}\]
Again, multiply and divided by 2, we get
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{2\sin 8x\cdot \cos 8x}{2\times 2\times 2\times 2\times \sin x}\]
The sine double angle formula tells us that $2\sin 8x\cos 8x$ is always equal to $\sin 16x$.
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{\sin 16x}{2\times 2\times 2\times 2\times \sin x}\]
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{\sin 16x}{16\sin x}\]
Hence proved.
Note: Alternatively, The given question is solved as follows. Let us consider $\sin (16x)$ and apply the sine double angle formula that tells us $\sin (16x)$ is always equal to $2\sin 8x\cdot \cos 8x$.
$\sin (16x)=2\sin 8x\cos 8x$
The sine double angle formula tells us that $\sin 8x$ is always equal to $2\sin 4x\cos 4x$.
$\sin (16x)=2(2\sin 4x\cos 4x)\cos 8x$
$\sin (16x)=4\sin 4x\cos 4x\cos 8x$
The sine double angle formula tells us that $\sin 4x$ is always equal to $2\sin 2x\cos 2x$.
$\sin (16x)=4(2\sin 2x\cos 2x)\cos 4x\cos 8x$
$\sin (16x)=8\sin 2x\cos 2x\cos 4x\cos 8x$
The sine double angle formula tells us that $\sin 2x$ is always equal to $2\sin x\cos x$.
$\sin (16x)=8(2\sin x\cos x)\cos 2x\cos 4x\cos 8x$
$\sin (16x)=16\sin x\cos x\cos 2x\cos 4x\cos 8x$
Dividing both sides by $16\sin x$, we get
$\dfrac{\sin (16x)}{16\sin x}=\cos x\cos 2x\cos 4x\cos 8x$
Hence proved.
Complete step-by-step answer:
Let us consider the L. H. S. $\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x$ and multiply and divide by the trigonometric sine function $\sin x$.
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{\sin x\cdot \cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x}{\sin x}\]
Now multiply and divided by 2, we get
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{2\sin x\cdot \cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x}{2\sin x}\]
The sine double angle formula tells us that $2\sin x\cos x$ is always equal to $\sin 2x$.
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{\sin 2x\cdot cox2x\cdot \cos 4x\cdot \cos 8x}{2\sin x}\]
Again, multiply and divided by 2, we get
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{2\sin 2x\cdot cox2x\cdot \cos 4x\cdot \cos 8x}{2\times 2\times \sin x}\]
The sine double angle formula tells us that $2\sin 2x\cos 2x$ is always equal to $\sin 4x$.
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{\sin 4x\cdot \cos 4x\cdot \cos 8x}{2\times 2\times \sin x}\]
Also, multiply and divided by 2, we get
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{2\sin 4x\cdot \cos 4x\cdot \cos 8x}{2\times 2\times 2\times \sin x}\]
The sine double angle formula tells us that $2\sin 4x\cos 4x$ is always equal to $\sin 8x$.
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{\sin 8x\cdot \cos 8x}{2\times 2\times 2\times \sin x}\]
Again, multiply and divided by 2, we get
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{2\sin 8x\cdot \cos 8x}{2\times 2\times 2\times 2\times \sin x}\]
The sine double angle formula tells us that $2\sin 8x\cos 8x$ is always equal to $\sin 16x$.
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{\sin 16x}{2\times 2\times 2\times 2\times \sin x}\]
\[\cos x\cdot cox2x\cdot \cos 4x\cdot \cos 8x=\dfrac{\sin 16x}{16\sin x}\]
Hence proved.
Note: Alternatively, The given question is solved as follows. Let us consider $\sin (16x)$ and apply the sine double angle formula that tells us $\sin (16x)$ is always equal to $2\sin 8x\cdot \cos 8x$.
$\sin (16x)=2\sin 8x\cos 8x$
The sine double angle formula tells us that $\sin 8x$ is always equal to $2\sin 4x\cos 4x$.
$\sin (16x)=2(2\sin 4x\cos 4x)\cos 8x$
$\sin (16x)=4\sin 4x\cos 4x\cos 8x$
The sine double angle formula tells us that $\sin 4x$ is always equal to $2\sin 2x\cos 2x$.
$\sin (16x)=4(2\sin 2x\cos 2x)\cos 4x\cos 8x$
$\sin (16x)=8\sin 2x\cos 2x\cos 4x\cos 8x$
The sine double angle formula tells us that $\sin 2x$ is always equal to $2\sin x\cos x$.
$\sin (16x)=8(2\sin x\cos x)\cos 2x\cos 4x\cos 8x$
$\sin (16x)=16\sin x\cos x\cos 2x\cos 4x\cos 8x$
Dividing both sides by $16\sin x$, we get
$\dfrac{\sin (16x)}{16\sin x}=\cos x\cos 2x\cos 4x\cos 8x$
Hence proved.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Question An example of homologous organs is a Our arm class 10 biology CBSE

What is Commercial Farming ? What are its types ? Explain them with Examples

What is the past tense of read class 10 english CBSE

Fill in the blank One of the students absent yesterday class 10 english CBSE
