
Prove that:
\[\dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=1+\sec \theta \operatorname{cosec}\theta \]
Answer
617.4k+ views
Hint: By using the trigonometric identities we can convert the cotangent terms into the tangent terms and then simplify it using the corresponding identities.
Complete step-by-step answer:
\[\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \operatorname{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}\]
\[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\]
Relations between different sides and angles of a right angled triangle are called trigonometric ratios.
\[\begin{align}
& \sin \theta =\dfrac{\text{Opposite}}{\text{Hypotenuse}} \\
& \cos \theta =\dfrac{\text{adjacent}}{\text{Hypotenuse}} \\
& \tan \theta =\dfrac{\text{Opposite}}{\text{adjacent}} \\
\end{align}\]
TRIGONOMETRIC IDENTITIES:
An equation involving trigonometric functions which is true for all those angles for which the functions are defined is called trigonometric identity.
\[\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \operatorname{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}\]
\[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\]
Now, from the given equation we get,
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }\]
\[\Rightarrow \dfrac{\tan \theta }{1-\dfrac{1}{\tan \theta }}+\dfrac{\dfrac{1}{\tan \theta
}}{1-\tan \theta }\text{ }\left[ \because \cot \theta =\dfrac{1}{\tan \theta } \right]\]
\[\Rightarrow \dfrac{{{\tan }^{2}}\theta }{\tan \theta -1}+\dfrac{1}{\tan \theta \left( 1-\tan
\theta \right)}\]
Now, take the common term out and rewrite the equation.
\[\begin{align}
& \Rightarrow \dfrac{1}{1-\tan \theta }\left( \dfrac{1}{\tan \theta }-{{\tan }^{2}}\theta \right) \\
& \Rightarrow \dfrac{1}{1-\tan \theta }\left( \dfrac{1-{{\tan }^{3}}\theta }{\tan \theta } \right) \\
\end{align}\]
\[\Rightarrow \dfrac{\left( 1-\tan \theta \right)\left( 1+{{\tan }^{2}}\theta +\tan \theta
\right)}{\left( 1-\tan \theta \right)\tan \theta }\text{ }\left[ \because
{{x}^{3}}-{{a}^{3}}=\left( x-a \right)\left( {{x}^{2}}+{{a}^{2}}+ax \right) \right]\]
\[\Rightarrow \dfrac{{{\sec }^{2}}\theta +\tan \theta }{\tan \theta }\text{ }\left[ \because
{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 \right]\]
\[\begin{align}
& \Rightarrow \dfrac{{{\sec }^{2}}\theta }{\tan \theta }+1\text{ }\left[ \because \dfrac{\sec \theta }{\tan \theta }=\operatorname{cosec}\theta \right] \\
& \Rightarrow 1+\sec \theta \operatorname{cosec}\theta \\
\end{align}\]
Note: Instead of converting the cotangent terms into tangent terms we can also convert them into sine and cosine terms and then simplify the equation so formed using the corresponding trigonometric identities. Both the methods give the same result but this one will be more lengthy.
\[\dfrac{\sin \theta }{\cos \theta }=\tan \theta \]
It is important to note that the following cubic equation formed in tangent terms can be simplified into the product of the linear and quadratic terms which thereby cancels out the common terms. Then on the further simplification of the equation formed using the trigonometric identities gives the result.
Complete step-by-step answer:
\[\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \operatorname{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}\]
\[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\]
Relations between different sides and angles of a right angled triangle are called trigonometric ratios.
\[\begin{align}
& \sin \theta =\dfrac{\text{Opposite}}{\text{Hypotenuse}} \\
& \cos \theta =\dfrac{\text{adjacent}}{\text{Hypotenuse}} \\
& \tan \theta =\dfrac{\text{Opposite}}{\text{adjacent}} \\
\end{align}\]
TRIGONOMETRIC IDENTITIES:
An equation involving trigonometric functions which is true for all those angles for which the functions are defined is called trigonometric identity.
\[\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \operatorname{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}\]
\[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\]
Now, from the given equation we get,
\[\Rightarrow \dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }\]
\[\Rightarrow \dfrac{\tan \theta }{1-\dfrac{1}{\tan \theta }}+\dfrac{\dfrac{1}{\tan \theta
}}{1-\tan \theta }\text{ }\left[ \because \cot \theta =\dfrac{1}{\tan \theta } \right]\]
\[\Rightarrow \dfrac{{{\tan }^{2}}\theta }{\tan \theta -1}+\dfrac{1}{\tan \theta \left( 1-\tan
\theta \right)}\]
Now, take the common term out and rewrite the equation.
\[\begin{align}
& \Rightarrow \dfrac{1}{1-\tan \theta }\left( \dfrac{1}{\tan \theta }-{{\tan }^{2}}\theta \right) \\
& \Rightarrow \dfrac{1}{1-\tan \theta }\left( \dfrac{1-{{\tan }^{3}}\theta }{\tan \theta } \right) \\
\end{align}\]
\[\Rightarrow \dfrac{\left( 1-\tan \theta \right)\left( 1+{{\tan }^{2}}\theta +\tan \theta
\right)}{\left( 1-\tan \theta \right)\tan \theta }\text{ }\left[ \because
{{x}^{3}}-{{a}^{3}}=\left( x-a \right)\left( {{x}^{2}}+{{a}^{2}}+ax \right) \right]\]
\[\Rightarrow \dfrac{{{\sec }^{2}}\theta +\tan \theta }{\tan \theta }\text{ }\left[ \because
{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 \right]\]
\[\begin{align}
& \Rightarrow \dfrac{{{\sec }^{2}}\theta }{\tan \theta }+1\text{ }\left[ \because \dfrac{\sec \theta }{\tan \theta }=\operatorname{cosec}\theta \right] \\
& \Rightarrow 1+\sec \theta \operatorname{cosec}\theta \\
\end{align}\]
Note: Instead of converting the cotangent terms into tangent terms we can also convert them into sine and cosine terms and then simplify the equation so formed using the corresponding trigonometric identities. Both the methods give the same result but this one will be more lengthy.
\[\dfrac{\sin \theta }{\cos \theta }=\tan \theta \]
It is important to note that the following cubic equation formed in tangent terms can be simplified into the product of the linear and quadratic terms which thereby cancels out the common terms. Then on the further simplification of the equation formed using the trigonometric identities gives the result.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

