
Prove that $\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta
}}{{1 - \tan \theta }} = 1 + \sec \theta \cos ec\theta $
Answer
615.9k+ views
Hint: Make use of the definition of trigonometric ratios that is of $\tan \theta $ and
$\cot \theta $ and solve it.
Complete step-by-step answer:
We have been given with
LHS=$\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta
}}$
Now let us express $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }},\cot \theta =
\dfrac{{\cos \theta }}{{\sin \theta }}$
So, we get $\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\cos \theta
}}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin \theta }}}}{{1 - \dfrac{{\sin
\theta }}{{\cos \theta }}}}$
Now, let us take LCM for the terms in the denominator and solve it
So, we get $\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{{\sin \theta - \cos
\theta }}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin \theta
}}}}{{\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}}}$
On solving further,$\dfrac{{{{\sin }^2}\theta }}{{\cos \theta (\sin \theta - \cos \theta
)}} + \dfrac{{{{\cos }^2}\theta }}{{\sin \theta (\cos \theta - \sin \theta )}}$
$ \Rightarrow \dfrac{{{{\sin }^2}\theta }}{{\cos \theta (\sin \theta
- \cos \theta )}} - \dfrac{{{{\cos }^2}\theta }}{{\sin \theta (\sin \theta - \cos \theta )}}$
Now, let us take out $\dfrac{1}{{\sin \theta - \cos \theta }}$ common from the denominator
So, we get
$
\dfrac{1}{{\sin \theta - \cos \theta }}\left[ {\dfrac{{{{\sin }^2}\theta }}{{\cos \theta
}} - \dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right] \\
\\
$
On taking LCM and solving further, we get
\[\dfrac{1}{{\sin \theta - \cos \theta }}\left[ {\dfrac{{{{\sin }^3}\theta - {{\cos
}^3}\theta }}{{\sin \theta \cos \theta }}} \right]\]
Now ${\sin ^3}\theta - {\cos ^3}\theta $ is of the form ${a^3} - {b^3}$
We know ${a^3} - {b^3} = (a - b)({a^2} + {b^2} +ab)$
So, now we can write in the equation ${\sin ^3}\theta - {\cos ^3}\theta $ as
\[\dfrac{1}{{\sin \theta - \cos \theta }}\left[ {\dfrac{{\left( {\sin \theta - \cos \theta }
\right)({{\sin }^2} + {{\cos }^2}\theta + \sin \theta \cos \theta )}}{{\sin \theta \cos
\theta }}} \right]\]
${\sin ^2}\theta + {\cos ^2}\theta = 1$
So, on making use of this in the equation ,we get
$
\dfrac{{\left( {1 + \sin \theta \cos \theta } \right)}}{{\sin \theta \cos \theta }} \\
= \dfrac{1}{{\sin \theta \cos \theta }} + 1 \\
\dfrac{1}{{\sin \theta }} = \cos ec\theta ,\dfrac{1}{{\cos \theta }} = \sec \theta \\
$
So, we get $1 + \sec \theta \cos ec\theta $ =RHS,
Hence the result is proved.
Note: We have to modify the equations here in accordance to the RHS which we have
to prove and also make use of the suitable trigonometric identities to wherever needed
so that the equations can be simplified.
$\cot \theta $ and solve it.
Complete step-by-step answer:
We have been given with
LHS=$\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta
}}$
Now let us express $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }},\cot \theta =
\dfrac{{\cos \theta }}{{\sin \theta }}$
So, we get $\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\cos \theta
}}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin \theta }}}}{{1 - \dfrac{{\sin
\theta }}{{\cos \theta }}}}$
Now, let us take LCM for the terms in the denominator and solve it
So, we get $\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{{\sin \theta - \cos
\theta }}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin \theta
}}}}{{\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}}}$
On solving further,$\dfrac{{{{\sin }^2}\theta }}{{\cos \theta (\sin \theta - \cos \theta
)}} + \dfrac{{{{\cos }^2}\theta }}{{\sin \theta (\cos \theta - \sin \theta )}}$
$ \Rightarrow \dfrac{{{{\sin }^2}\theta }}{{\cos \theta (\sin \theta
- \cos \theta )}} - \dfrac{{{{\cos }^2}\theta }}{{\sin \theta (\sin \theta - \cos \theta )}}$
Now, let us take out $\dfrac{1}{{\sin \theta - \cos \theta }}$ common from the denominator
So, we get
$
\dfrac{1}{{\sin \theta - \cos \theta }}\left[ {\dfrac{{{{\sin }^2}\theta }}{{\cos \theta
}} - \dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right] \\
\\
$
On taking LCM and solving further, we get
\[\dfrac{1}{{\sin \theta - \cos \theta }}\left[ {\dfrac{{{{\sin }^3}\theta - {{\cos
}^3}\theta }}{{\sin \theta \cos \theta }}} \right]\]
Now ${\sin ^3}\theta - {\cos ^3}\theta $ is of the form ${a^3} - {b^3}$
We know ${a^3} - {b^3} = (a - b)({a^2} + {b^2} +ab)$
So, now we can write in the equation ${\sin ^3}\theta - {\cos ^3}\theta $ as
\[\dfrac{1}{{\sin \theta - \cos \theta }}\left[ {\dfrac{{\left( {\sin \theta - \cos \theta }
\right)({{\sin }^2} + {{\cos }^2}\theta + \sin \theta \cos \theta )}}{{\sin \theta \cos
\theta }}} \right]\]
${\sin ^2}\theta + {\cos ^2}\theta = 1$
So, on making use of this in the equation ,we get
$
\dfrac{{\left( {1 + \sin \theta \cos \theta } \right)}}{{\sin \theta \cos \theta }} \\
= \dfrac{1}{{\sin \theta \cos \theta }} + 1 \\
\dfrac{1}{{\sin \theta }} = \cos ec\theta ,\dfrac{1}{{\cos \theta }} = \sec \theta \\
$
So, we get $1 + \sec \theta \cos ec\theta $ =RHS,
Hence the result is proved.
Note: We have to modify the equations here in accordance to the RHS which we have
to prove and also make use of the suitable trigonometric identities to wherever needed
so that the equations can be simplified.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

