
Prove that:
$\dfrac{{\tan A}}{{(1 - \cot A)}} + \dfrac{{\cot A}}{{(1 - \tan A)}} = \sec A \times \cos ecA + 1$
Answer
617.7k+ views
Hint: Here, we will simplify the L.H.S and convert it into R.H.S of the equation using trigonometric formulae.
Complete step-by-step answer:
$\dfrac{{\tan A}}{{(1 - \cot A)}} + \dfrac{{\cot A}}{{(1 - \tan A)}} = \sec A \times \cos ecA + 1$
Take LHS
As you know $\cot A = \dfrac{1}{{\tan A}}$ , substitute this value
$
\dfrac{{\tan A}}{{(1 - \dfrac{1}{{\tan A}})}} + \dfrac{{\cot A}}{{(1 - \tan A)}} \\
\Rightarrow \dfrac{{{{\tan }^2}A}}{{(\tan A - 1)}} + \dfrac{{\cot A}}{{(1 - \tan A)}} \\
\Rightarrow \dfrac{{{{\tan }^2}A}}{{(\tan A - 1)}} - \dfrac{{\cot A}}{{(\tan A - 1)}} = \dfrac{{{{\tan }^2}A - \dfrac{1}{{\tan A}}}}{{(\tan A - 1)}} = \dfrac{{{{\tan }^3}A - 1}}{{\tan A(\tan A - 1)}} \\
$
In numerator apply ${a^3} - {b^3}$ formula$ = (a - b)({a^2} + {b^2} + ab)$
$ \Rightarrow \dfrac{{(\tan A - 1)({{\tan }^2}A + 1 + \tan A)}}{{\tan A(\tan A - 1)}} = \dfrac{{{{\tan }^2}A + 1 + \tan A}}{{\tan A}}$
As you know ${\tan ^2}A + 1 = {\sec ^2}A$
$ \Rightarrow \dfrac{{{{\sec }^2}A + \tan A}}{{\tan A}} = \dfrac{{{{\sec }^2}A}}{{\tan A}} + 1$
You know $\sec A = \dfrac{1}{{\cos A}},\tan A = \dfrac{{\sin A}}{{\cos A}}$
$ \Rightarrow \dfrac{{{{\sec }^2}A}}{{\tan A}} + 1 = \dfrac{{\cos A}}{{{{\cos }^2}A \times \sin A}} + 1 = \dfrac{1}{{\cos A \times \sin A}} + 1$
You know $\dfrac{1}{{\sin A}} = \cos ecA$
$ \Rightarrow \dfrac{1}{{\cos A \times \sin A}} + 1 = \sec A \times \cos ecA + 1 = R.H.S$
Note: In this type of question always remember the trigonometric formula it will help you in finding your desired answer.
Complete step-by-step answer:
$\dfrac{{\tan A}}{{(1 - \cot A)}} + \dfrac{{\cot A}}{{(1 - \tan A)}} = \sec A \times \cos ecA + 1$
Take LHS
As you know $\cot A = \dfrac{1}{{\tan A}}$ , substitute this value
$
\dfrac{{\tan A}}{{(1 - \dfrac{1}{{\tan A}})}} + \dfrac{{\cot A}}{{(1 - \tan A)}} \\
\Rightarrow \dfrac{{{{\tan }^2}A}}{{(\tan A - 1)}} + \dfrac{{\cot A}}{{(1 - \tan A)}} \\
\Rightarrow \dfrac{{{{\tan }^2}A}}{{(\tan A - 1)}} - \dfrac{{\cot A}}{{(\tan A - 1)}} = \dfrac{{{{\tan }^2}A - \dfrac{1}{{\tan A}}}}{{(\tan A - 1)}} = \dfrac{{{{\tan }^3}A - 1}}{{\tan A(\tan A - 1)}} \\
$
In numerator apply ${a^3} - {b^3}$ formula$ = (a - b)({a^2} + {b^2} + ab)$
$ \Rightarrow \dfrac{{(\tan A - 1)({{\tan }^2}A + 1 + \tan A)}}{{\tan A(\tan A - 1)}} = \dfrac{{{{\tan }^2}A + 1 + \tan A}}{{\tan A}}$
As you know ${\tan ^2}A + 1 = {\sec ^2}A$
$ \Rightarrow \dfrac{{{{\sec }^2}A + \tan A}}{{\tan A}} = \dfrac{{{{\sec }^2}A}}{{\tan A}} + 1$
You know $\sec A = \dfrac{1}{{\cos A}},\tan A = \dfrac{{\sin A}}{{\cos A}}$
$ \Rightarrow \dfrac{{{{\sec }^2}A}}{{\tan A}} + 1 = \dfrac{{\cos A}}{{{{\cos }^2}A \times \sin A}} + 1 = \dfrac{1}{{\cos A \times \sin A}} + 1$
You know $\dfrac{1}{{\sin A}} = \cos ecA$
$ \Rightarrow \dfrac{1}{{\cos A \times \sin A}} + 1 = \sec A \times \cos ecA + 1 = R.H.S$
Note: In this type of question always remember the trigonometric formula it will help you in finding your desired answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

