
Prove that $\dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = 2\cos ecA$
Answer
559.2k+ views
Hint:
Here, we will prove the relation between the given trigonometric Identity. We will first simplify the terms on the left-hand side of the given trigonometric relation by multiplying with their conjugate. Then by subtracting the simplified expression and by using trigonometric ratio, we will prove the given trigonometric relation.
Formula Used:
We will use the following formula:
1) Trigonometric Identity: $1 - {\sec ^2}A = - {\tan ^2}A$
2) Trigonometric Ratio: $\sec A = \dfrac{1}{{\cos A}}$
3) Trigonometric Ratio: $\tan A = \dfrac{{\sin A}}{{\cos A}}$
Complete step by step solution:
We are given to prove that $\dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = 2\cos ecA$
Now, considering $\dfrac{{\tan A}}{{1 + \sec A}}$ and multiplying with its conjugate, we get
$\dfrac{{\tan A}}{{1 + \sec A}} = \dfrac{{\tan A}}{{1 + \sec A}} \times \dfrac{{1 - \sec A}}{{1 - \sec A}}$
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} = \dfrac{{\tan A\left( {1 - \sec A} \right)}}{{\left( {1 + \sec A} \right)\left( {1 - \sec A} \right)}}$
By multiplying the terms in the parenthesis, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} = \dfrac{{\tan A - \tan A\sec A}}{{1 - {{\sec }^2}A + \sec A - \sec A}}$
By cancelling the same terms in the denominator, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} = \dfrac{{\tan A\left( {1 - \sec A} \right)}}{{1 - {{\sec }^2}A}}$………………………………………………………………………………….$\left( 1 \right)$
Now, considering $\dfrac{{\tan A}}{{1 - \sec A}}$ and multiplying with its conjugate, we get
$\dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A}}{{1 - \sec A}} \times \dfrac{{1 + \sec A}}{{1 + \sec A}}$
$ \Rightarrow \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A\left( {1 + \sec A} \right)}}{{\left( {1 - \sec A} \right)\left( {1 + \sec A} \right)}}$
By multiplying the terms in the parenthesis, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A\left( {1 + \sec A} \right)}}{{1 - {{\sec }^2}A + \sec A - \sec A}}$
By cancelling the same terms in the denominator, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A\left( {1 + \sec A} \right)}}{{1 - {{\sec }^2}A}}$……………………………………………………………………………$\left( 2 \right)$
By subtracting equation $\left( 2 \right)$ from equation $\left( 1 \right)$ , we get
$\dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A\left( {1 - \sec A} \right)}}{{1 - {{\sec }^2}A}} - \dfrac{{\tan A\left( {1 + \sec A} \right)}}{{1 - {{\sec }^2}A}}$
Factoring out common term, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A\left[ {\left( {1 - \sec A} \right) - \left( {1 + \sec A} \right)} \right]}}{{1 - {{\sec }^2}A}}$
By simplifying the equation, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A\left[ {1 - \sec A - 1 - \sec A} \right]}}{{1 - {{\sec }^2}A}}$
By adding and subtracting like terms, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A\left[ { - 2\sec A} \right]}}{{ - {{\tan }^2}A}}$
By cancelling the like terms, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{ - 2\sec A}}{{ - \tan A}}$
By rewriting in terms of sine and cosine ratios, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{2\dfrac{1}{{\cos A}}}}{{\dfrac{{\sin A}}{{\cos A}}}}$
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{2}{{\cos A}} \times \dfrac{{\cos A}}{{\sin A}}$
By cancelling like terms, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{2}{{\sin A}}$
By using reciprocal trigonometric ratio, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = 2\cos ecA$
Therefore, $\dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = 2\cos ecA$ is proved.
Note:
Trigonometric equation is defined as an equation involving the trigonometric ratios. Trigonometric identity is an equation which is always true for all the variables. We need to keep in mind that the trigonometric ratio and the co-trigonometric ratio is always reciprocal to each other. Trigonometric ratios are used to find the relationships between the sides of a right angle triangle. Conjugate is a term where the sign is changed between two terms.
Here, we will prove the relation between the given trigonometric Identity. We will first simplify the terms on the left-hand side of the given trigonometric relation by multiplying with their conjugate. Then by subtracting the simplified expression and by using trigonometric ratio, we will prove the given trigonometric relation.
Formula Used:
We will use the following formula:
1) Trigonometric Identity: $1 - {\sec ^2}A = - {\tan ^2}A$
2) Trigonometric Ratio: $\sec A = \dfrac{1}{{\cos A}}$
3) Trigonometric Ratio: $\tan A = \dfrac{{\sin A}}{{\cos A}}$
Complete step by step solution:
We are given to prove that $\dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = 2\cos ecA$
Now, considering $\dfrac{{\tan A}}{{1 + \sec A}}$ and multiplying with its conjugate, we get
$\dfrac{{\tan A}}{{1 + \sec A}} = \dfrac{{\tan A}}{{1 + \sec A}} \times \dfrac{{1 - \sec A}}{{1 - \sec A}}$
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} = \dfrac{{\tan A\left( {1 - \sec A} \right)}}{{\left( {1 + \sec A} \right)\left( {1 - \sec A} \right)}}$
By multiplying the terms in the parenthesis, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} = \dfrac{{\tan A - \tan A\sec A}}{{1 - {{\sec }^2}A + \sec A - \sec A}}$
By cancelling the same terms in the denominator, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} = \dfrac{{\tan A\left( {1 - \sec A} \right)}}{{1 - {{\sec }^2}A}}$………………………………………………………………………………….$\left( 1 \right)$
Now, considering $\dfrac{{\tan A}}{{1 - \sec A}}$ and multiplying with its conjugate, we get
$\dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A}}{{1 - \sec A}} \times \dfrac{{1 + \sec A}}{{1 + \sec A}}$
$ \Rightarrow \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A\left( {1 + \sec A} \right)}}{{\left( {1 - \sec A} \right)\left( {1 + \sec A} \right)}}$
By multiplying the terms in the parenthesis, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A\left( {1 + \sec A} \right)}}{{1 - {{\sec }^2}A + \sec A - \sec A}}$
By cancelling the same terms in the denominator, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A\left( {1 + \sec A} \right)}}{{1 - {{\sec }^2}A}}$……………………………………………………………………………$\left( 2 \right)$
By subtracting equation $\left( 2 \right)$ from equation $\left( 1 \right)$ , we get
$\dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A\left( {1 - \sec A} \right)}}{{1 - {{\sec }^2}A}} - \dfrac{{\tan A\left( {1 + \sec A} \right)}}{{1 - {{\sec }^2}A}}$
Factoring out common term, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A\left[ {\left( {1 - \sec A} \right) - \left( {1 + \sec A} \right)} \right]}}{{1 - {{\sec }^2}A}}$
By simplifying the equation, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A\left[ {1 - \sec A - 1 - \sec A} \right]}}{{1 - {{\sec }^2}A}}$
By adding and subtracting like terms, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{\tan A\left[ { - 2\sec A} \right]}}{{ - {{\tan }^2}A}}$
By cancelling the like terms, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{ - 2\sec A}}{{ - \tan A}}$
By rewriting in terms of sine and cosine ratios, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{{2\dfrac{1}{{\cos A}}}}{{\dfrac{{\sin A}}{{\cos A}}}}$
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{2}{{\cos A}} \times \dfrac{{\cos A}}{{\sin A}}$
By cancelling like terms, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = \dfrac{2}{{\sin A}}$
By using reciprocal trigonometric ratio, we get
$ \Rightarrow \dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = 2\cos ecA$
Therefore, $\dfrac{{\tan A}}{{1 + \sec A}} - \dfrac{{\tan A}}{{1 - \sec A}} = 2\cos ecA$ is proved.
Note:
Trigonometric equation is defined as an equation involving the trigonometric ratios. Trigonometric identity is an equation which is always true for all the variables. We need to keep in mind that the trigonometric ratio and the co-trigonometric ratio is always reciprocal to each other. Trigonometric ratios are used to find the relationships between the sides of a right angle triangle. Conjugate is a term where the sign is changed between two terms.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

