
Prove that: $\dfrac{{{\tan }^{2}}2\theta -{{\tan }^{2}}\theta }{1-{{\tan }^{2}}2\theta {{\tan }^{2}}\theta }=\tan 3\theta -\tan \theta $.
Answer
609.6k+ views
Hint: We will be using the concept of trigonometry to solve the problem. We will be using the fact that,
$\begin{align}
& \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
\end{align}$,
Also, we will first apply algebraic identity that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$, then we will use the formula for $\tan \left( A+B \right)\ and\ \tan \left( A-B \right)$.
Complete step-by-step answer:
Now, we have to prove that,
$\dfrac{{{\tan }^{2}}2\theta -{{\tan }^{2}}\theta }{1-{{\tan }^{2}}2\theta {{\tan }^{2}}\theta }=\tan 3\theta -\tan \theta $
Now, we will take LHS and prove it to be equal to RHS.
In LHS we have,
$\dfrac{{{\tan }^{2}}2\theta -{{\tan }^{2}}\theta }{1-{{\tan }^{2}}2\theta {{\tan }^{2}}\theta }$
Now, we will apply the algebraic identity that,
${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
So, we have,
$=\dfrac{\left( \tan 2\theta +\tan \theta \right)\left( \tan 2\theta -\tan \theta \right)}{\left( 1-\tan 2\theta \tan \theta \right)\left( 1+\tan 2\theta \tan \theta \right)}$
Now, we know that,
$\begin{align}
& \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
\end{align}$
So, using this we have,
$\begin{align}
& =\left( \dfrac{\tan 2\theta +\tan \theta }{1-\tan 2\theta \tan \theta } \right)\times \left( \dfrac{\tan 2\theta -\tan \theta }{1+\tan 2\theta \tan \theta } \right) \\
& =\tan \left( 2\theta +\theta \right)\tan \left( 2\theta -\theta \right) \\
& =\tan \left( 3\theta \right)\tan \left( \theta \right) \\
\end{align}$
Now, we have LHS = RHS. Hence proved.
Note: To solve these type of questions it is important to note that we have first applied an algebraic identity that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$, then we have applied the formula that,
$\begin{align}
& \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
\end{align}$
$\begin{align}
& \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
\end{align}$,
Also, we will first apply algebraic identity that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$, then we will use the formula for $\tan \left( A+B \right)\ and\ \tan \left( A-B \right)$.
Complete step-by-step answer:
Now, we have to prove that,
$\dfrac{{{\tan }^{2}}2\theta -{{\tan }^{2}}\theta }{1-{{\tan }^{2}}2\theta {{\tan }^{2}}\theta }=\tan 3\theta -\tan \theta $
Now, we will take LHS and prove it to be equal to RHS.
In LHS we have,
$\dfrac{{{\tan }^{2}}2\theta -{{\tan }^{2}}\theta }{1-{{\tan }^{2}}2\theta {{\tan }^{2}}\theta }$
Now, we will apply the algebraic identity that,
${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
So, we have,
$=\dfrac{\left( \tan 2\theta +\tan \theta \right)\left( \tan 2\theta -\tan \theta \right)}{\left( 1-\tan 2\theta \tan \theta \right)\left( 1+\tan 2\theta \tan \theta \right)}$
Now, we know that,
$\begin{align}
& \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
\end{align}$
So, using this we have,
$\begin{align}
& =\left( \dfrac{\tan 2\theta +\tan \theta }{1-\tan 2\theta \tan \theta } \right)\times \left( \dfrac{\tan 2\theta -\tan \theta }{1+\tan 2\theta \tan \theta } \right) \\
& =\tan \left( 2\theta +\theta \right)\tan \left( 2\theta -\theta \right) \\
& =\tan \left( 3\theta \right)\tan \left( \theta \right) \\
\end{align}$
Now, we have LHS = RHS. Hence proved.
Note: To solve these type of questions it is important to note that we have first applied an algebraic identity that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$, then we have applied the formula that,
$\begin{align}
& \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
\end{align}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

