
Prove that: $\dfrac{{{\tan }^{2}}2\theta -{{\tan }^{2}}\theta }{1-{{\tan }^{2}}2\theta {{\tan }^{2}}\theta }=\tan 3\theta -\tan \theta $.
Answer
595.2k+ views
Hint: We will be using the concept of trigonometry to solve the problem. We will be using the fact that,
$\begin{align}
& \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
\end{align}$,
Also, we will first apply algebraic identity that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$, then we will use the formula for $\tan \left( A+B \right)\ and\ \tan \left( A-B \right)$.
Complete step-by-step answer:
Now, we have to prove that,
$\dfrac{{{\tan }^{2}}2\theta -{{\tan }^{2}}\theta }{1-{{\tan }^{2}}2\theta {{\tan }^{2}}\theta }=\tan 3\theta -\tan \theta $
Now, we will take LHS and prove it to be equal to RHS.
In LHS we have,
$\dfrac{{{\tan }^{2}}2\theta -{{\tan }^{2}}\theta }{1-{{\tan }^{2}}2\theta {{\tan }^{2}}\theta }$
Now, we will apply the algebraic identity that,
${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
So, we have,
$=\dfrac{\left( \tan 2\theta +\tan \theta \right)\left( \tan 2\theta -\tan \theta \right)}{\left( 1-\tan 2\theta \tan \theta \right)\left( 1+\tan 2\theta \tan \theta \right)}$
Now, we know that,
$\begin{align}
& \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
\end{align}$
So, using this we have,
$\begin{align}
& =\left( \dfrac{\tan 2\theta +\tan \theta }{1-\tan 2\theta \tan \theta } \right)\times \left( \dfrac{\tan 2\theta -\tan \theta }{1+\tan 2\theta \tan \theta } \right) \\
& =\tan \left( 2\theta +\theta \right)\tan \left( 2\theta -\theta \right) \\
& =\tan \left( 3\theta \right)\tan \left( \theta \right) \\
\end{align}$
Now, we have LHS = RHS. Hence proved.
Note: To solve these type of questions it is important to note that we have first applied an algebraic identity that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$, then we have applied the formula that,
$\begin{align}
& \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
\end{align}$
$\begin{align}
& \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
\end{align}$,
Also, we will first apply algebraic identity that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$, then we will use the formula for $\tan \left( A+B \right)\ and\ \tan \left( A-B \right)$.
Complete step-by-step answer:
Now, we have to prove that,
$\dfrac{{{\tan }^{2}}2\theta -{{\tan }^{2}}\theta }{1-{{\tan }^{2}}2\theta {{\tan }^{2}}\theta }=\tan 3\theta -\tan \theta $
Now, we will take LHS and prove it to be equal to RHS.
In LHS we have,
$\dfrac{{{\tan }^{2}}2\theta -{{\tan }^{2}}\theta }{1-{{\tan }^{2}}2\theta {{\tan }^{2}}\theta }$
Now, we will apply the algebraic identity that,
${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
So, we have,
$=\dfrac{\left( \tan 2\theta +\tan \theta \right)\left( \tan 2\theta -\tan \theta \right)}{\left( 1-\tan 2\theta \tan \theta \right)\left( 1+\tan 2\theta \tan \theta \right)}$
Now, we know that,
$\begin{align}
& \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
\end{align}$
So, using this we have,
$\begin{align}
& =\left( \dfrac{\tan 2\theta +\tan \theta }{1-\tan 2\theta \tan \theta } \right)\times \left( \dfrac{\tan 2\theta -\tan \theta }{1+\tan 2\theta \tan \theta } \right) \\
& =\tan \left( 2\theta +\theta \right)\tan \left( 2\theta -\theta \right) \\
& =\tan \left( 3\theta \right)\tan \left( \theta \right) \\
\end{align}$
Now, we have LHS = RHS. Hence proved.
Note: To solve these type of questions it is important to note that we have first applied an algebraic identity that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$, then we have applied the formula that,
$\begin{align}
& \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
\end{align}$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

10 examples of evaporation in daily life with explanations

