
Prove that
$\dfrac{{\sin x - \sin y}}{{\cos x + \cos y}} = \tan \dfrac{{x - y}}{2}$
Answer
522.9k+ views
Hint: Here, we have to prove $\dfrac{{\sin x - \sin y}}{{\cos x + \cos y}} = \tan \dfrac{{x - y}}{2}$. Take the LHS of the equation and try to prove LHS equal to RHS. For $\sin A - \sin B$, we have formula $\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$ and for $\cos A + \cos B$ we have formula $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$. Using these formulas, we will get LHS equal to RHS.
Complete step-by-step answer:
In this question, we are given a trigonometric equation and we need to prove that it is correct.
Given equation: $\dfrac{{\sin x - \sin y}}{{\cos x + \cos y}} = \tan \dfrac{{x - y}}{2}$- - - - - - - - - - - - (1)
Here, LHS$ = \dfrac{{\sin x - \sin y}}{{\cos x + \cos y}}$ and RHS$ = \tan \dfrac{{x - y}}{2}$. So, we need to prove that LHS is equal to RHS.
For proving this, let us take the LHS part of the equation (1). Therefore, we get
$ \Rightarrow $LHS$ = \dfrac{{\sin x - \sin y}}{{\cos x + \cos y}}$- - - - - - - - - - - - (2)
Here, in numerator we have $\sin x - \sin y$. Now we know the formula that
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
And in denominator, we have $\cos x + \cos y$. Now, we know the formula that
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Therefore, putting these values in equation (2), we get
$ \Rightarrow $LHS$ = \dfrac{{2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right)}}{{2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)}}$- - - - - - - - - - - - - (3)
Here, 2 and $\cos \left( {\dfrac{{x + y}}{2}} \right)$ gets cancelled. Therefore, equation (3) will become
$ \Rightarrow $LHS$ = \dfrac{{\sin \left( {\dfrac{{x - y}}{2}} \right)}}{{\cos \left( {\dfrac{{x - y}}{2}} \right)}}$- - - - - - - - - (4)
Now, we know that
$\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $
Therefore, putting this value in equation (4), we get
$ \Rightarrow $LHS$ = \tan \left( {\dfrac{{x - y}}{2}} \right)$
$ \Rightarrow LHS = RHS$
Hence, we have got LHS equal to RHS.
Therefore, we have proved that $\dfrac{{\sin x - \sin y}}{{\cos x + \cos y}} = \tan \dfrac{{x - y}}{2}$.
Note: This question is a simple formula based question. For solving trigonometric questions, always keep the important formulas and results in mind. Other important formulas are
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
$\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
Complete step-by-step answer:
In this question, we are given a trigonometric equation and we need to prove that it is correct.
Given equation: $\dfrac{{\sin x - \sin y}}{{\cos x + \cos y}} = \tan \dfrac{{x - y}}{2}$- - - - - - - - - - - - (1)
Here, LHS$ = \dfrac{{\sin x - \sin y}}{{\cos x + \cos y}}$ and RHS$ = \tan \dfrac{{x - y}}{2}$. So, we need to prove that LHS is equal to RHS.
For proving this, let us take the LHS part of the equation (1). Therefore, we get
$ \Rightarrow $LHS$ = \dfrac{{\sin x - \sin y}}{{\cos x + \cos y}}$- - - - - - - - - - - - (2)
Here, in numerator we have $\sin x - \sin y$. Now we know the formula that
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
And in denominator, we have $\cos x + \cos y$. Now, we know the formula that
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Therefore, putting these values in equation (2), we get
$ \Rightarrow $LHS$ = \dfrac{{2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right)}}{{2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)}}$- - - - - - - - - - - - - (3)
Here, 2 and $\cos \left( {\dfrac{{x + y}}{2}} \right)$ gets cancelled. Therefore, equation (3) will become
$ \Rightarrow $LHS$ = \dfrac{{\sin \left( {\dfrac{{x - y}}{2}} \right)}}{{\cos \left( {\dfrac{{x - y}}{2}} \right)}}$- - - - - - - - - (4)
Now, we know that
$\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $
Therefore, putting this value in equation (4), we get
$ \Rightarrow $LHS$ = \tan \left( {\dfrac{{x - y}}{2}} \right)$
$ \Rightarrow LHS = RHS$
Hence, we have got LHS equal to RHS.
Therefore, we have proved that $\dfrac{{\sin x - \sin y}}{{\cos x + \cos y}} = \tan \dfrac{{x - y}}{2}$.
Note: This question is a simple formula based question. For solving trigonometric questions, always keep the important formulas and results in mind. Other important formulas are
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
$\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

